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Summary

Our research program aims at developing and applying theoretical, numerical,
and graphical tools for the quantitative description and deeper understanding of
the transition phenomena and at relating transition phenomena to the
processes in the viscous sublayer of turbulent flow. Toward these goals, a
spectral code for linear stability analysis has been developed that allows easy
adaptation to a large variety of basic flows and stability equations. This code is
the basis for extensions to analyze secondary and nonlinear stability in parallel
and nonparallel flows. Improved numerical techniques have been developed to
reduce the computational demand of secondary instability studies. A new
approach to convective instability analysis in nonparallel flows on the basis of
parabolized stability equations (PSE) has been developed for incompressible
and compressible flows. Encouraging results have been obtained in the areas
of linear, nonlinear, and secondary instability. The PSE code appears as a
viable alternative to DNS codes that allows transition simulations at a small
fraction of the computational cost.

I
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1. Objectives

Our research program aims at developing and applying theoretical, numerical, and
graphical tools for the quantitative description and deeper understanding of the transition
phenomena and at relating transition phenomena to the processes in the viscous sub-
layer of turbulent flow. In detail, the program aims at the following topics

(1) The effect of nonparallelism and TS amplitude growth on secondary instability.

(2) Secondary instability of longitudinal vortices in parallel and nonparallel flows.

(3) Secondary instability of oblique waves in boundary layers.

(4) Perturbation analysis of nonlinear interactions between competing modes of secon-
dary instability. Interaction between 2D and 3D fields in the breakdown stage.

(5) Analysis of numerical transition simulations and three-dimensional threshold states.

The first-year effort focused on items (1) - (3), (4a, 2D-3D interaction), and (5b, threshold
states).

2. Achievements

The variety of basic stability problems related to our studies spawned major efforts
to develop stability codes on a common basis of program modules. These efforts were
supported by the regrettable loss of a considerable part of my software and data (via
unreadable tapes) when I had to return the workstations previously used (and on loan to
OSU) to VPI & SU.

A second major effort was to attract students and to prepare them for this research
program - an effort that was not fully successful. Instead of the planned simultaneous
attack on a variety of problems, we have concentrated on the most promising areas and
achieved progress in particular with a new approach to boundary layer transition based
on parabolized equations. A more detailed report is given in the following

2.1. The Stability Code "Llnear.x"

We have developed a stability code named "linear.x" that is sufficiently generic to
allow analysis of incompressible and compressible stability problems. The code is highly
modular such that different numerical methods can be implemented. The standard ver-
sion uses single-domain spectral methods to solve the boundary-value problem directly.
This choice, though not most efficient in terms of computer time, permits obtaining spec-
tra of eigenvalues or single eigenvalues and eigenfunctions. Optionally, the program pro-
duces tables of eigenvalues and curves (e.g. neutral curves) in one coordinate plane of a
three-dimensional parameter space.

Various built-in transformations account for shifted and/or stretched, semi-infinite,
and infinite domains. Normally, the boundary conditions are satisfied in the end points of
the physical dcmain, without artificial domain truncation. For single eigenmodes in semi-
infinite domains, the asymptotic properties can be incorporated with this approach. In
infinite domains, incorporation of asymptotic properties requires the use of two-domain or
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multi-domain methods that have been implemented in a new version of the code.
Account for the asymptotic properties is convenient or even indispensable when dealing
with modes that slowly decay such as TS waves or Gbrtler vortices of small wavenumber.
The use of multi-domain spectral methods in general increases the resolution for critical
layers away from the boundaries such as the neighborhood of the generalized inflection
point at high Mach numbers. As an alternative to the spectral approach, the compact
finite-difference scheme of Malik (1988) has been implemented in a separate version of
the code.

The code is void of any particular physical stability problem. The stability problem is
condensed into four insert files that are included at compile time and can be prepared
without any change to the stability code. The first of these insert files defines array sizes
and contains the number of collocation points and the characteristics of the stability equa-
tions, such as the number of variables, constants, and parameters and the order of
differentiation. The second file contains declarations of complex variables. The third file
provides the basic flow for the stability analysis by direct calculation or reading from exist-
ing files. The last file defines the coefficients of the system of stability equations and their
derivatives with respect to the parameters. This file can be produced by manual deriva-
tion of the equations or by using symbolic manipulators (Macsyma, Mathematica).

The operation of the batch version of the stability code is controlled by two files the
first of which defines boundary conditions, domain transformations for the spectral
method, and constants. The second input file controls the tasks to be performed and pro-
vides the relevant paramater values. An interactive version of the code has been
developed and is under continuous development as the primary tool for our research.
The interactive version is menu driven and provides output in form of text and color
graphics. This more efficient research code to analyze spectra and the properties of
eigenfunctions, and to monitor the results of traverses in the parameter space graphically
was necessary to better grasp the content of the output and to shorten the multi-level pro-
cedure of obtaining plots locally, while the computations are performed on the Cray.

The interactive version of "linear.x" is the basis for other codes that implement the
perturbation analysis of nonlinear modes and mode interactions, Floquet analysis of
secondary instability, and the local stability properties in nonparallel flows.

The batch version of the stability code has been documented and an introduction to
its use will appear in the proceedings of the NASNICASE Workshop on Stability and
Transition. A preprint of this paper is contained in Appendix A.

The insert files for the stability code have been produced and tested for the most
common stability problems in incompressible flows. Available basic flows are boundary
layers (flat plate, curved wall, Falkner-Skan, rotating disk, Falkner-Skan-Cook), plane and
circular Couette and Poiseuille flows, and mixing layer. Compressible basic flows avail-
able in consistent format are similarity solutions for boundary layers (plane and axisym-
metric), the viscous normal shock, and the compressible plane Couette flow.

The code and selected insert files have been distributed to students, various col-
leagues, and participants in the NASMICASE Workshop on Stability and Transition. At
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this Workshop, I was member of the panel on "Theory of Stability and Transition." The
position paper submitted for the proceedings (Appendix B) reflects some of the work
under this grant.

2.2. Perturbation Analysis of Nonlinear Secondary Instability

A perturbation analysis of the nonlinear interaction of three-dimensional secondary
modes with the basic flow and two-dimensional primary TS waves has been performed
together with J. D Crouch under AFOSR Contract F46920-87-K-0005. This work has
been continued in cooperation with J. D. Crouch who is now Postdoctoral Fellow at NRL.
Our efforts aimed at identifying types of interactions and threshold conditions for the
breakdown of the laminar flow. The effect of higher-order terms has been analyzed and
documented. The study has been extended to lower frequencies where no experimental
data can be obtained nor computer simulations can be performed. Our results show that
transition at the more realistic lower frequencies is quite different from the known
processes at high frequency and low Reynolds number studied in all previous work.

Some of our findings on threshold conditions were reported at the IUTAM Sympo-
sium "Laminar-Turbulent Transition" in Toulouse. The paper submitted for publication in
the proceedings is contained in Appendix C. A more detailed description of the perturba-
tion method, results for subharmonic and fundamental routes to transition, and com-
parison with experiments has been submitted for publication in Journal of Fluid Mechan-
ics (Appendix D).

2.3. Perturbation Analysis of Nonlinear and Nonparallel Stability

To prepare for the analysis of streamwise variations on the evolution of secondary
instabilities, we have clarified the effect of such variations on the stability of TS waves in
(similar) boundary layers with or without pressure gradients. Various misconceptions and
incorrect results in the literature have been revealed and a correct and consistent set of
new results generated. These results largely confirm those of Gaster (1974). One of the
main achievements is the rationality of our approach in the sense of perturbations
methods. While previous work could account for either nonparallelism or nonlinearity, we
can account for both simultaneously. High-order Landau series for the nonlinear stability
of primary modes and third-order series for secondary modes have been successfully
applied. In the work on secondary instability, we have applied an innovative iterative
method for solving the large algebraic eigenvalue problem which will be very valuable for
studies on compressible flows. Although we consider completing and publishing the
results, our main attention has been given to the more promising approach described in
the next section.

2.4. Parabollzed Stability Equations

We have developed a new approach to the analysis of incompressible and compres-
sible boundary-layer instability. This approach started from the observation (Herbert &
Bertolotti 1987) that the streamwise development of a 2D disturbance of given frequency
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o and complex wavenumber a is governed by a locally valid parabolic differential equa-
tion. This equation is obtained from the Navier-Stokes equations by application of the
boundary-layer approximation to mean flow and the slowly varying amplitude function
O(x,y) of the disturbance. The rapid variation cf the disturbance that would violate the
boundary-layer approximation is extracted by an exponential factor, in stream-function for-
mulation

x

V(x,y,t) = O(x,y) exp[f ia(t)dt - icot] ,
Xo

where o) is the frequency and a the complex wavenumber. For given a(xo) and initial
amplitude distribution O(xo,y), the parabolic equation can be solved by suitable marching
procedures. At the next step, however, the local wavenumber must be known to continue
the procedure. Using a proper norm on O(x,y), the small change in wavenumber can be
obtained from the amplitjde functions at the old and new position. The cyclic marching
step - wavenumber update can be repeated in quite large steps in Reynolds number and
is more efficient than the traditional step-by-step Orr-Sommerfeld solution and integration.
What is needed is an initial condition and initial wavenumber. These data can be
obtained from a local analysis at an initial position. The local equations are derived from
the parabolic equation by use of Taylor expansions in x with higher derivatives neglected
under the boundary-layer approximation. The local procedure requires simultaneously
solving for the wavenumber (eigenvalue), the amplitude function, and its streamwise
derivative.

Both local and marching procedure are mathematically pleasant since only the well-
established boundary-layer approximation is applied. The approach to mean flow and
disturbances is consistent. The local procedure is rational in the sense of perturbation
methods while previous procedures were not. The parabolized stability equations (PSE)
are valid in the complete boundary-layer region and are more general than unsteady
boundary-layer equations and Orr-Sommerfeld equation which are special cases. There-
fore, the PSE will be a valuable tool for receptivity studies without any asymptotic match-
ing. Similar or nonsimilar boundary layers can be analyzed in the same uniform march-
ing scheme. Perhaps the greatest advantage of the PSE is the ease nf retaining non-
linear terms. Previously, no method was known to incorporate both nonparallelism and
nonlinearity. The PSE is superior to the PNS approach since the convective terms for the
oscillatory solutions are retained. The solution should, in fact, agree with the DNS solu-
tion if a sufficient number of harmonics is carried along. Recent results of P. Spalart
obtained with a 2D DNS code in fact verify the accuracy of the nonlinear PSE solutions
(see Appendix E, fig. 11, 12). A detailed description of our method, results, and com-
parison with previous work will be submitted shortly to Journal of Fluid Mechanics. A
draft of this paper is contained in Appendix E.
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2.5. Secondary Instability and Transition Simulation

The analysis of the secondary instability in periodically modulated flows requires
simultaneous solution of the homogeneous equations for various Fourier modes constitut-
ing the secondary disturbance (Herbert 1988). This process is computationally very
demanding, especially in .;ompressible flows. We have developed an iterative scheme to
solve the large eigenvalue problem. The increased efficiency of this scheme permits
more extended studies in the multi-dimensional parameter space. This scheme is
currently available for incompressible and compressible flows under the parallel-flow
approximation.

For a more accurate description of the growth rate of secondary modes, we have
developed the PSE approach of the previous section to incorporate the streamwise varia-
tion of both the mean flow and the primary disturbance into wave interactions in
incompressible flow. Given the initial data for both a 2D and a 3D primary wave, the evo-
lution of the primary wave and the parametric excitation and evolution of the secondary
mode can be studied without resort to modeling by Floquet theory. The secondary insta-
bility arises as in DNS solutions from the nonlinear interaction of 2D and 3D wave com-
ponents. Since nonlinearity is accounted for, the integration of the PSE also exhibits the
feedback of the secondary modes on the primary 2D wave. In our previous work, Floquet
theory provided only the parametric effects of the primary wave on the 3D modes, while
the feedback had to be incorporated by an intricate perturbation approach (Crouch 1988,
Herbert & Crouch 1989). A comparison of the growth rates obtained from Floquet theory
and PSE solution is given in figure 1. Figure 2 shows the evolution of amplitudes for the
2D wave, 3D wave, and mean-flow distortion. The numerical (marching) approach has
been extended to track the development up to the amplitude levels of the spike stage.
Consistent with (usually temporal) DNS results, the evolution can be described with a
modest number of modes in streamwise and spanwise direction. At this time, the only
PNS results for comparison with our (spatial) results are those of Fasel et al. (1990).
While the detailed comparison is difficult because of differences in generating the initial
conditions and the 'moving down-stream boundary' in the DNS, the agreement in the
gross features is evident (see figure 3). The spatial results are also similar to temporal
simulations of the standard cases. A detailed comparison with experiments and DNS
results (a matter of tedious post-processing) is on the way. The PSE results also confirm
the results of the perturbation analysis of the nonlinear stage of secondary instability of
Crouch & Herbert (Appendices C and D).

The PSE can be applied for the analysis of both temporal or spatial evolution in
parallel or weakly nonparallel flows. Whenever the transition process is governed by con-
vective instabilities and the 'upstream' influence appears negligible, solving the nonlinear
PSE is an attractive alternative to DNS. The capability of efficiently tracking the spatial
evolution makes the PSE a hot prospect for transition prediction in boundary layers. The
present PSE code serves primarily to demonstrate the basic capabilities of the approach
disregarding any sophistication of the numerics. Yet we integrate from the initial condi-
tion to breakdown in less than three minutes (Cray YMP8/864) while Fasel et al. (1990)
require hundreds of hours on comparable machines (the exact figure is unknown to me).
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With improvements in the numerical treatment we envision further improvements by a fac-
tor of five to ten. Besides the high efficiency, tile PSE approach overcomes two other
shortcomings of the DNS relevant at the lower frequencies where transition occurs in
practice. DNS at low frequency would require larger domains and higher resolution
because of the increased Reynolds number, and the computational cost would be inhibi-
tive. Moreover (as discussed by Spalart in Appendix E), the large amplitude ratios (e9) of
disturbances in the upstream and downstream parts of the domain would increase the
stiffness of the system and cause unsurmountable numerical problems. Runs of the PSE
code (with modest increase in resolution) at low frequency are currently performed.

The local and marching procedures associated with the PSE concept have been
ported to the compressible boundary layer. Computations have been performed up to
M = 4.5, while reliable results have been obtained for M < 3. In the limit of M -- 0, we
find perfect agreement with incompressible results. It is interesting to find that the strong
nonparallel effects on oblique waves persist at lower Mach numbers (see figure 5) and, in
fact, in the incompressible limit. This result escaped the attention of previous studies and
indicates that Squire's theorem cannot be applied in nonparallel boundary layers.

3. Ongoing Work
The present capabilities to analyze nonlinear wave interactions with the PSE

approach and the obvious prospects of further develrping this approach have
discouraged some of our efforts to apply perturbation methods, e.g. to study the nonlinear
interactions between competing modes of secondary instability. We have performed
theoretical studies on the secondary instability of oblique waves in boundary layers and
developed the governing equations. However, we encountered a conceptual difficulty, a
major discrepancy between the case of a single oblique wave and the case of a pair of
oblique waves with opposite wave angles. The first case has no characteristic length
scale along the direction of the wave crest, and therefore, exhibits stability characteristics
qualitatively similar to those of the 2D problem. In the second case, however, the basic
flow is doubly periodic and inaccessible to standard Floquet analysis. We continue the
work on the theoretical basis (since this problem will reoccur in compressible flows with
the dominant first modes being oblique) and prepare simulation of both cases with the
PSE code.

The efforts to analyze the secondary instability of longitudinal vortices in parallel and
nonparallel flows had been postponed to await (rather than duplicate) results of Liu & Yu
(1989). This work was reactivated after learning about their approach and results. Liu &
Yu consider the stability of velocity profiles parallel and normal to the wall and thus
'separate' the basic flow into profiles that depend on a single variable. While this
approach is convenient, it is known to be neither justified nor conclusive (Davis 1976).
Recent DNS results by Liu & Domaradz, i (1989) for this problem show results different
from those of Liu & Yu and those of Hall & Seddougui (1989) and Seddougui & Bassom
(1990).
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Owing to the strong nonlinearity of the vortices at the onset of secondary instability,
the treatment of this stability problem (even under the parallel-flow assumption) must be
based on partial differential equations for the eigenfunctions that depend on two spatial
variables. We have successfully developed the basic elements of this approach and
applied them to problems in finite domains. A report on this approach and potential appli-
cations has been given at the "International Conference on Spectral and High-Order
Methods for Partial Differential Equations," ICOSAHOM '89 in Como, Italy, June 1989.
Detailed results on the stability of Dean's flow in a coilea pipe have been presented at
the APS-DFD Meeting in Palo Alto, November 1989. Current work aims at calculating the
nonlinear basic flow in a semi-infinite strip and analyzing the spectrum of eigenmodes for
secondary instability as a function of Gbrtler number, wave number, and amplitude.
Results will be reported at the "First Symposium on Gbrtler Vortex Flows," Euromech
261, Nantes, France, June 1990. As a member of the Scientific Committee, I am
involved in planning a IUTAM Symposium on "Stability of Strongly Nonparallel Flows" in
1992.

4. Personnel

The following personnel has participated in the work and partially has been sup-
ported under this contract:

Th. Herbert, principal investigator

Fabio P. Bertolotti, PhD student (now supported under NASA Training Grant NGT-
50259)

Vasiliki Hartonas, MS student

Eun-Young Lee, PhD student

Charlotte Hawley, Research Assistant 2 Engineering

The graduate research assistantship of E.-Y. Lee has been terminated owing to his lack-
ing performance. F. P. Bertolotti will receive his Ph.D. in Summer 1990. V. Hartonas will
receive her M.S. at about the same time. Two new graduate students, M. Wang and R.
Bayless, will cooperate in this program in 1990.
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Figure 1. Spatial growth rates of primary 2D wave and subharmonic 3D wave according
to Floquet theory for parallel flow (o) and PSE marching code (lines).
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Figure 2. Streamwise development of primary 2D wave, subharmonic 3D wave, and
mean flow distortion obtained wilh the PSE marching code.
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Figure 3. Spatial transition simulation of the Kachanov-Levchenko experiment at
F = 124 with the PSE code. An integral measure of the amplitude is used.
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Figure 4. Growth rates vs. Reynolds number for 2D waves and oblique waves (4f = 500)
at M = 0.05, F = 86, Te = 273. Comparison of parallel and nonparallel results
of the PSE marching code.
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Linear.x

A Code for Linear Stability Analysis

Version 1.0

Thorwald Herbert

Department of Mechanical Engineering
Department of Aeronautical and Astronautical Engineering

The Ohio State University
Columbus, Ohio 43210, U. S. A.

Linear-x is a spectral code for the analysis of the linear stability of some basic state.
The code is generic and void of any particular physical problem yet provides for various
common tasks:

global - eigenvalue spectra.
local - single eigenvalues and eigenfunctions,
table - one- or more-dimensional tables of eigenvalues

curve - (neutral) curves in parameter space

and others. A specific physical problem can be defined in a set of usually very short
files. Some of these files are included at compile time, while definitions, tasks, and
parameters are read during run time. The code is written in Fortran 77. The standard
version has been used in various Unix environments and under VAX-VMS. The code
has been successfully used for a variety of classical stability problems and is currently
utilized to analyze the stability of compressible flows.

1. Introduction

Over the past 25 years, I have written reams of stability codes implementing different mathematical
or numerical methods, different fluid flows, different aspectv of stability, and different computers.
I have often regretted the waste of time - my own, my colleagues', or the students' time - spent on
developing another or tailoring an existing program for a particular application, often to generate
just a few stability results that are unavailable in the literature. On the other hand, I have realized
that many of my programs are alike and differ essentially only in major categories: linear stability,
weakly nonlinear stability or mode interaction, nonlinear equilibrium states, secondary instability,
and so on. The code linear.x is the first step to consolidate ideas, techniques, and subroutines into
as few as possible generic programs that can be used in a standardized way on most any computer.
After initial use by the students of my Fall 1988 course on "Stability of Fluid Motions," the
extended version has meanwhile been used for stability research in various areas and has not only
performed well, but replaced previously used codes.

The positive experience with the current version suggests to make the code available to those
interested in its application. This experience also motivates to further extend the present version
for linear stability analysis and to incorporate higher levels of stability analysis into a family of
codes with common elements. Version 1.0 is essentially a batch program. An obvious extension
for use on workstations will be an interactive interface (or various interfaces to handle different



window systems). Another extension currently developed in cooperation with Dr. Gordon
Erlebacher (NASA Langley Research Center) is the graphical output in real time, either locally or
remotely. In the remote version, the stability code runs in some Cray while menus for interactive
parameter changes and graphics are displayed on the workstation. The common graphics library
CGL that enables this remote mode between Cray and SGI Iris workstations over Ethernet or
Arpanet was developed and kindly provided by Diana Choi (NASA Ames Research Center).

Linear.x was not developed to compete with other codes in speed or otherwise. Except for chal-
lenging "big" problems like compressible stability, computer time is not a crucial issue any more.
The code was developed to be able to obtain some additional results in a few minutes after the
thought (if the specific insert files are available) and to obtain the first results for a new problem
within a few hours (if the equations are available). Since the specifications of a new problem are
usually short, the debugging effort is usually small. The code tries to check what the user does
and prints error messages before termination but is not foolproof: garbage in - garbage out The
basic operation of the code will be explained in the following, and some understanding will help to
get things right In case of emergency, a look at the moderately commented source code may help.
More recently, malfunction of the code was caused in every case by incorrect input or
physical/mathematical intricacies, not by hidden bugs.

The code comes with the source of all subroutines. The user may choose the libraries of a specific
computer, e.g. vectorized routines for the Cray, instead of the subroutines algr.f and algc.f (and
Eispack RG and CG) that consume most of the CPU time. The goal to keep the code generic and
to use Fortran 77 for its wide availability and use (in spite of its lacking features) required
compromises. Especially the Fortran hierarchy of statements (which prohibits e.g. dimension after
data statements) made the placement and structure of the "physics insert files" mandatory. The
standard version is for the Unix environment, uses the C-preprocessor to include the physics and
machine-specific lines, and has a Makefile to produce the executable code. Some examples are
included. For non-Unix environments, the code can be produced "by hand" with the editor.

2. Basic Approach

A stability problem is defined by a basic state (or basic flow) and stability equations. We consider
basic states that depend on a single independent variable 9, e.g. a stratified fluid with density p(U),
9 pointing opposite to gravity, circular Couette flow with azimuthal velocity V = C, t + C2/,
plane Poiseuille flow with streamwise velocity U = I -y2, or a compressible boundary layer with
streamwise velocity UV), temperature T(V), density p(U), and viscosity v9). The basic state may
depend on constants such as Cl and C2 in the case of Couette flow or the ratio C1( = 7) of
specific heats for the boundary layer. The basic state may also depend on parwneters such as the
Mach number P1 of the boundary layer. (The distinction of constants and parameters will be
justified below.) Note that the basic state may be defined in a finite domain, a < Y b, in a
semi-infinite domain, 0 9 <c, or in an infinite domain, - < 9 < -. We may also wish to
name the independent variable 9, or Ci and Pk in a different, more problem-oriented way.

The linear stability of basic states of above form is in general governed by a system of stability
equations that are homogeneous, linear, ordinary differential equations (ODE's) for the variables
v. () with homogeneous boundary conditions at the end points of the domain. In the simplest case,
there is only one variable v 1, and the system of ODE's reduces to a single ODE of (at least)



second order. In other cases, we deal with more variables (five for the compressible boundary
layer) and the same number of differential equations of different orders. The basic state and its
derivatives appear in the coefficients of the differential equations together with various parameters
Pk (e.g. Reynolds or Taylor number, wavenumber(s), growth rate) and constants Ci .
The goal of any stability analysis is to find solutions of the characteristic equation F(P) = 0 of the
problem, where P = (Pk) is the vector of parameters. Obviously, F depends also on the basic
state. The interest can be in a single solution (eigenvalue) Pv, the associated variables v(9) = (v.),
or all solutions (eigenvalue spectrum) of the characteristic equation. How many eigenvalues and
what types of spectra (discrete, continuous) result in a given problem is discussed in monographs
and journal articles. Here, we try to find solutions to the characteristic equation of a discretized
problem numerically. With this approach, we will certainly find only a finite number of eigen-
values including those of most physical relevance. How accurately we approximate higher discrete
eigenvalues depends on how well we can resolve the associated eigenfunctions numerically. Con-
tinuous spectra are approximated by discrete spectra, with the eigenvalues lined up along curves.
As the resolution changes, members of the discrete spectrum approximate a fixed value, while the
members of the "continuous" spectrum keep moving along shifting curves.
The stability equations may be real or complex. If the equations are real, the eigenvalues may be
real or complex. The distinction of real and complex quantities in programming languages (and
the larger computational effort for the latter case) suggest two separate codes if one wants to
exploit the higher efficiency of the real version. The complex version can handle all cases but
needs more memory and CPU time. To enhance the versatility of the code, all parameters (and
constants) are considered real. Hence, real and imaginary parts of complex quantities are treated as
separate parameters with provisions to use them in combined form in complex arithmetic opera-
tions. When solving the characteristic equation, we can select in the real version any single param-
eter, in the complex version any two parameters as "eigenvalue." This approach permits search-
ing directly for points on the neutral curve and a variety of other useful relations, e.g. the relation
between temporal and spatial growth rates.
Some restrictions apply for eigenvalue spectra. The complex version requires a complex quantity
as an eigenvalue. Real or complex, the eigenvalue must appear linearly in the stability equations.
This requirement explicitly excludes spectra for cases where the eigenvalues affect the basic state.
If the eigenvalue appears to some small power (usually, wavenumbers appear at least up to second
power), the stability equations may be rewritten in an extended form that contains the eigenvalue
linearly (see the example of the Orr-Somrr -rfeld equation below).

A spectral collocation method is used to convert the homogeneous boundary value problem for
ODE's into an algebraic problem. The user does not need any expertise in spectral methods to
apply the code. All that needs to be specified is the number of collocation points which affects the
number of eigenvalues obtainable and the accuracy of the solutions, one of two choices of colloca-
tion points (Gauss or Gauss-Lobatto points, the "default"), the choice of boundary conditions for
each of the variables, one of the built-in transformations of the physical interval to the standard
interval -1 : 2 < I for Chebyshev spectral methods, and the symmetry of the approximation for
each dependent variable, if applicable. For those interested: linear combinations of Chebyshev
polynomials are used for the spectral expansions. The linear combinations are chosen such that the
expansion functions satisfy the boundary conditions. For a detailed account of spectral methods,



see Canuto et al. (1988).

In essence, the global procedure converts the stability proiAcm into the algebraic eigenvalue prob-
lem (A - ciB)a = 0 with matrices A, B, and the eigenvalue ;. B is usually singular and Eispack
(and many other) routines are not prepared for this case. However, many routines solve problems
of the form (C - XI)w = 0. Therefore, we use internally C = A-1B and X = - o-' to obtain the
eigenvalue spectrum with Eispack (routines RG or CG). The singularity of B usually introduces
some very large spurious eigenvalues that may be suppressed in the results. The local procedure,
table, and curve use variations of Newton's method to solve the nonlinear algebraic form of the
problem for the spectral expansion coefficients and the eigenvalue. The application of Newton's
method requires that the user provides not only the stability equations but also the derivatives of
these equations with respect to all those parameters he or she wishes to consider as eigenvalue can-
didates. Moreover, Newton's method requires an initial guess for the eigenvalue and converges
only if this guess is sufficiently close to a root (maybe not the desired root) of the characteristic
equation. An initial guess can be found without prior knowledge if the global procedure is appli-
cable for at least one of the possible eigenvalues. Any eigenvalue of the spectrum can be contin-
ued using the table option on various routes through the parameter space. If desired, the local pro-
cedure also provides the values of the variables at the collocation points.
The production of tables is a relatively straightforward task that requires only sufficiently small
steps (for Newton's method to converge) and avoiding conflicts between prescribed parameters and
eigenvalues. Generating curves in some coordinate plane of the parameter space is less trivial.
These curves may or may not be closed, may have rapid variations of curvature, and follow tortu-
ous routes. The tracing of curves uses an arc-length continuation procedure in scaled variables
with internal control of the step size. The iteration direction for Newton's method is (nearly) nor-
mal to the curve. The user specifications are similar to those necessary when preparing plots of
data (choice of axes, scales, and a "window"). Both table and curve require that a starting point
be given by the local procedure.

Constants and Parameters are distinguished by their role in the problem. Constants are necessary
but remain essentially fixed during the stability analysis. Typical examples are the ratio of specific
heats in a study of compressible boundary layers, or switches that determine which relation to use
between temperature and viscosity or whether to solve the small-gap or the full equations for the
Taylor-Couette problem. Constants are read and printed only once. Parameters are all quantities
that may vary in tables and curves or as eigenvalues. They are read every time the global or local
procedure is executed and printed for every eigenvalue found by any task. Parameters, therefore,
require more input and cause more output than constants (that's all). If the user wants to study the
eigenvalue as a function of the ratio of specific heats, he or she just needs to redefine the constant
as a parameter (an effort of a few minutes, including recompilation of the code).

The principal output and error messages appear on standard output, typically on the terminal or
window. The line length may exceed the standard 80 or so characters. A copy of the input is
appended to an input-log file that can be rerun if necessary. A copy of the output is appended to
an output-log file for later inspection. In addition, numerous smaller task-specific files are pro-
duced that contain the data in a form suitable for producing quick plots with packages like igraph
or plotxy.



By the way, if you feel this code can be written in a different way, I completely agree. Change it
if you so desire. Note that close to 100% of the CPU time is used in the linear-algebra subroutines
(algr, algc, Eispack CG, and RG) and improvements in the main code will barely affect the overall
efficiency. If you have a serious problem, or a really good idea, or a truly superior subroutine, or
an elaborate set of insert files for a problem of broader interest, mail it to me, E-mail:
tht@apollo.eng.ohio-state.edu. Include your authorship and contact address - it will stay there for
others to know. In the same way, I exjx t you to acknowledge the use of this code whenever you
use it in original or modified form to produce results for publication.

3. The Physics Files

From the foregoing, it is obvious that various data must be specified to adapt the generic code to a
specific problem. We describe the specifications for the complex version of the code (comments
on modifications for the real version are given in a separate section). It is often advantageous to
follow the directions with a specific example in mind. I suggest to look at one of the examples
while reading this section. The physical problem is specified in the following files:

common.ins Definitions
bstate.ins Parameters
complex.ins
vector.ins

The files with suffix .ins are included in the code during compile time. Which programs are
affected by changing a certain .ins file is given in the section "Dependencies" of the Makefile.
The data affecting the array sizes and specific storage areas for the basic state are defined in
common.ins. The file bstate.ins provides the values of the basic state and its derivatives (with
respect to Y and parameters, if needed) at the collocation points by explicit calculation (in simple
cases like plane Poiseuille flow), by reading these values from a file (e.g. for the Blasius profile
that is independent of parameters), by calling a subroutine, or otherwise. The file complex.ins
declares the complex quantities in the stability equations. The fie vector.ins defines the stability
equations by giving (the matrix of) the coefficients of each derivative in the stability equations at
the collocation points and a similar set of data for the derivatives with respect to parameters (for
Newton's method). Note that different stability equations can be applied to a given basic state.
Vice versa, different basic states can be analyzed with the same stability equation (e.g. the Orr-
Sommerfeld equation). For the "professional" user, it may be advisable to spend the time for
developing systematically the complete insert files (see the example "Plane Poiseuille Flow").
The remaining files are read at run time. The file Definitions provides the data -ffecting the spec-
tral method, the names of variables, names and values of constants (if any), and the names and
characteristics of the parameters. The file Parameters is the file frequently changed after the initial
setup has proved correct. This file defines various tasks to be performed in sequence until an error
occurs or termination is requested. Every task requires input data to be specified after its invoca-
tion. These details are discussed below.

A shortcoming of the current version 1.0 is the internal reference to parameters and constants by
number or input sequence, not by name. Alternatives using !able lookup suffer from pitfalls, typing
errors, and the need for fixed-format input (owing to unavailability of standardized internal read



statements in Fortran compilers). This shortcoming will be removed in a menu-driven version for
workstations. In version 1.0, we can only recommend precision in writing the initial setup and

leaving relevant comments in the input (especially the parameter) files as shown in the examples.

4. Preparing the Code

In the following, we discuss the details of the insert files. In the examples, the user-provided
information is printed in capitals while lower-case code is of concern only for those who wish to

study or modify the code.

4.1. common.ins

This file specifies the data affecting the array sizes and the storage areas for the basic state. The
file also specifies the implicit type of the real variables as real*8 (the default on the Cray). The

following data must be provided:

.X The highest index of the collocation points, j = 0, . . JX. The number IX+1

of points can reach from as few as 8, say, to as many as 200 or so. For

even larger numbers, round-off errors in the basic data foi the spectral

method come into play. For the standard problems of classical stability

theory, 10 collocation points are a reasonable choice except if critical layers
or center modes are involved. Blasius flow or Poiseuille flow (using sym-
metry) require 20 - 25 points for reasonable accuracy, with an increasing

number for increasing Reynolds number. With spectral methods, improve-

ments in accuracy can be obtained by small increases in DC.

NEQU The number of equations (and variables, NVAR=NEQU) in the stability

equations. This number should be as small as possible since (X+I).NEQU
determines the dimension of the algebraic systems to be solved.

NX The highest order of differentiation in any single ODE of the system of sta-

bility equations. Usually, NX = 2 or NX = 4. NX is not the total order of
the system.

NCON The number of constants or zero (if there are no constants).

NPAR The number of parameters. Note that complex parameters count as two real
parameters.

In addition, the common block COMMON /MSTATE/ must be specified to accommodate the basic
state and its derivati-,es, e.g.

COMMON /MSTATE/ UM(0:X,0:2),TM(0:JX,0:2)

to provide the mean flow UM = U,,,, (second index 0) and its first (second index 1) and second

(second index 2) derivatives and the same for the mean temperature at the collocation points.
While the mean temperature is of no interest when solving the Orr-Sommerfeld equation, the more
general setup also allows for extended sets of stability equations including the energy equation.

The common block MSTATE will be filled with values in the next file, bstate.ins.



4.2. bstate.ins

bstate.ins provides the values of the basic state (and derivatives) at the collocation points by expli-
cit calculation, by reading these values from a file, by calling a subroutine, or otherwise.

When entering the file bstate.ins, the following information is available:

j the index of the collocation point, j = 0, • •X

chy(j) the collocation point 9j
par(k) the array containing the parameters Pk, k = 1, • NPAR

and the data defined in common.ins, including the arrays for the basic state

The following additional names are internally used: chfy, itask, con, dpar, ipar, conname, pamame,
varname, problem, and the statement label 1.

4.3. complex.ins

The file complex.ins declares the complex quantities in the stability equation. The file consists of
the single statement complex*16 qli2,... (or complex ql,q2, .. for the Cray), where
ql,q2, • • - is the list of the complex quantities used in vector.ins.

4.4. vector.ins

The file vector.ins defines the stability equations by giving (the matrix of) the coefficients of each
derivative in the stability equation(s) at the collocation points and a similar set of data for the
derivatives with respect to parameters (for Newton's method). To properly derive the basis for this
file, we first list the stability equations and variables in some convenient (or arbitrary) order and
assign numbers to both equations and variables, starting with I. The total numbers of equations
and variables must be the same (NEQU in file common.ins). We obtain the stability equations in
the general form

NEON
SLil (vt) = 0O, i =-- ,.. NEQN(1

where Lil is a linear differential operator applied to the I-th variable v, in the i-th equation.
Second, we write every differential operator Lil in the form

NdLat I ,Pw,(, P) OD D = -- (2)
0 O

where the pw, are the coefficients of the n-th derivative of the 1-th variable in the i-th equation.
Many of these ps,,, are zero, others depend only on the parameters, and a few depend also on Y
since they contain the basic state or its derivatives. Third, we make a list of all constants and
parameters and assign numbers starting with I both for the first constant and for the first parame-
ter, but counting real and imaginary part separately. Fourth, we could write down the derivatives
of the p, with respect to the parameters we wish to consider as eigenvalues. However, this step
is in fact easier to perform with the editor on the computer.

When entering the file vector.ins, the following information is available:



ideriv to indicate whether the coefficients (ideriv=O) or their derivatives (ideriv=l)
are needed

j the index of the collocation point, j = 0, JX

chyo) the collocation point 9j
par(k) the array containing the parameters Pk, k = 1, • NPAR

the data defined in common.ins including the arrays for the basic state

the real constants ZRO=O, ONE=l,

and the complex constants ZERO=(O,O), UIMAG=(O,1)

The following additional names are internally used: chfy, rvec, itask, con, dpar, ipar, conname, par-
name, vamame, problem, and the statement labels 1 - 4.

At the beginning of vector.mns, it is useful to store the parameters par(k) in variables with
problem-oriented names, using the list made above. This step can be done for j=O only, or for any
j (since it consumes little time). Real and imaginary parts can be combined into complex quantities
to simplify the arithmetic statements. (The complex quantities must be declared in complex.ins.)
The file provides two branches for the coefficients (if ideriv=0) and their derivatives (if ideriv=1),
respectively.

For given parameters, the coefficients piw depend only on Y, p,(Q). To produce the first part of
vector.ins, the Pw( 9j) have to be assigned to the array PVEC(j,O), using the available informa-
tion. Zero elements can be skipped since the array PVEC is set to zero before entering vector.ins.
While j is given, the user must provide the lines for i - 1, • • - NEQU, l = 1, • • - NEQU, n=
l, • - • NX of nonzero coefficients.

The second part of the file requires to assign to PVEC(j,i,nl,k) the derivative of Pw with respect
to the parameter Pk at the j-th collocation point. One may easily verify that PVEC( • ,k) is the
derivative of PVEC( • ,0) with respect to P,. Here again, the elements have been reset to zero
and only nonzero derivatives must be provided. While k can vary from 1 to NPAR, the deriva-
tives are needed only with respect to those parameters Pk that will be considered eigenvalue candi-
dates. Suppose there is a single complex eigenvalue T = ;, + iao which in this file is defined as
SIGMA=CMPLX(PAR(4),PAR(5)), and we plan to generate tables of this eigenvalue as a function
of the other parameters. In this case, the derivatives must be provided only for k = 4, 5. Note that
aP ln,/aa = apId/&. while apid/l-,ai = i apwldlo and hence in our example we set PVEC( - - ,5)
= UIMAG*PVEC(... ,4).

The file vector.ins can be easily produced by symbolic manipulators like Macsyma or Mathematica.

After preparation of the above four files, the code is ready for compilation. Details on this step are
given in the section "Installation."

S. Preparing the Input Files



5.1. Definitions

The Definitions consist of various small groups of data described in the following:

(1) A single line of text with < 80 characters specifying the problem.

(2) One or more lines with NEQU integers idsy(n), n=l, • • • NEQU, specifying the symmetry of
each dependent variable with respect to the transformed variable 2 , where

-1 indicates no symmetry in 2

0 indicates symmetry inf

1 indicates antisymmetry in 2

If the mean flow is symmetric, exploiting symmetries can save one half of the collocation
points and make calculations more efficient. With the proper (larger) number of collocation
points, however, the same results can be obtained without using symmetry (-1 for all vari-
ables). In other problems, symmetry and the half-interval 0 <2 :5 1 may be used for
different reasons, as in the example of boundary layers, where many points are needed near
the wall.

(3) One or more lines with NEQU integers idbc(n), n=l, - • • NEQU, specifying the boundary
conditions for each variable, where

0 indicates no boundary condition on v,

1 indicates v= 0 at the boundaries

2 indicates Dv,=0attheboundaries

3 indicates v. = Dvy = 0 at the boundaries

Additional types of boundary conditions can be implemented in the subroutine chttoff. Ver-
sion 1.0 does not provide for different types of conditions at the two end points of the inter-
val.

(4) One line with one integer idpts specifying the type of collocation points:

0 Gauss points

I Gauss-Lobatto points

(see Canuto et al. 1988). Normally, I use idpts=l which places collocation points at the end
points (±1). Only if these end points cause problems (e.g. in cylindrical problems on the
axis), I use idpts=O.

(5) One line specifying the transformation 9 - 2 which consists of three data:

idtrf the type of transformation

atrf the first parameter of the transformation (or zero)

btrf the second parameter of the transformation (or zero)

The values of atrf and btrf must be specified even if they are not needed. The following
transformations are available:

idtrf--O = . No transformation. atrf=btrf--O



idtrf=l I = (2y - a - b)l(b - a) with atrf=a, btrf=b. This linear transforma-
tion maps the interval Y C [a,b] into 2 e [-1, 1].

idtrf=2 f = a 1(9 + a) with atrf=-a, btrf=0, the algebraic mapping of Y e [0, cc)

into f e [0, 1] where 2 = 1 for 9 = 0. This mapping is used for boun-

dary layers. For the Blasius profile, the parameter is typically atrf=4.5,
which places half the collocation points inside the displacement thick-

ness.

idtrf=3 . =exp(-9/a) with atrf=a, btrf--O, the exponential mapping of

9£ [0, o) into 2 e [0, 1 ] where 2 = 1 for 9 = 0 and typically atrf=20
for the Blasius boundary layer.

idtf=4 The algebraic mapping 2 = Y(92+a2) -t' 2  of 2 e [-1, 11 into
9 (-, oo) where f -4 1 as Y -- -o. Typically, atrf=-2.

idtrf=5 The hyperbolic tangent mapping 2 = tanh(9la) of 2 e [-1, 1] into
9 e(-o, o) where f -+1 as 9 -+ -. Typically, atrf=2.

(6) NCON lines, each line giving the name and value of the constant in fixed FORMAT

(A8,1X,E16.8)

conname the name of the constant, up to eight characters

value the value of the constant, right adjusted in columns 10-25

All constants are considered real. This section may be missing if NCON=0.

(7) NEQU=NVAR lines, each line giving the name of one dependent variable in fixed FORMAT
(A8)

varname the name of the variable, up to eight characters

The name of the independent variable in printouts is always x (transformed) or y (physical).

(8) NPAR lines, each line giving the name and the two identifiers iparl, ipar2 for one parameter

in fixed FORMAT (A8,IX,12,1X,12)

parname the name of the parameter, up to eight characters

iparl first identifier (see below)

ipar2 second identifier (see below)

where the meaning of the identifiers is as follows:

iparl=0 the parameter appears linear in the equations

iparl=l the parameter appears nonlinear in the equations

iparl=2 the parameter affects the basic state

If more than one of these characteristics are true, choose the highest value for iparl.

ipar2=0 the parameter is real

ipar2=l the parameter is the real part of a complex quantity

ipar2=2 the parameter is the imaginary part of a complex quantity



Real and imaginary parts must immediately follow each other (for the global procedure to
work).

Although tedius to describe, the Definitions are usually quick done. However, it is important to
prepare this file carefully since the sequence of data must be correct.

6. Tasks and Parameters
The file Parameters contains a sequence of tasks for the code to perform. Each task requires cer-
tain input data. All data are read in free input format. It is advantageous, however, to describe
(and use) certain data in group and to separate tasks by blank lines. The code can perform the
following tasks:

itask--O global procedure to find eigenvalue spectra

itask=l local procedure to find a single eigenvalue

itask=2 local procedure to find eigenvalue and eigenfunction

itask=3 table of eigenvalues in 1, 2, or 3 dimensions

itask=4 curve of solutions in the plane of two parameters

itask >4 terminate

itask=-1 close and reopen the file Parameters after pause

itask < -1 terminate

These tasks are described in the following sections.

6.1. Eigenvalue Spectra

Finding the eigenvalue spectrum is a computationally "expensive" task (in comparison with
finding single eigenvalues) with "extensive" output. Therefore, tables of spectra are not imple-
mented. To obtain the spectrum for a certain parameter combination, the file Parameters requires
the following information:

itask=O to indicate the desired task

ievl the number of the parameter that gives the real part of the eigenvalue

par(k) k=l, - • • NPAR, the list of all parameters (most convenient: one at a line),
where the values of par(ievl) and par(ievl+l) are irrelevant (=0).

Note that the imaginary part of the eigenvalue must be par(ievl+l).

6.2. Single Eigenvalues

In contrast to the previous global procedure to find spectra, the local procedure searches for the
values of two real parameters that solve the characteristic equation but are not necessarily real and
imaginary pan of a complex quantity. We denote these two parameters as the "first and second
eigenvalue parameter." To obtain an eigenvalue with the local procedure (Newton's method), an
initial guess must be specified. If such an estimate is not available, itask=O can help to provide
many eigenvalues (if the eigenvalue appears linearly in the stability equations). Otherwise, itask=3
(table) can help to analytically continue an eigenvalue known at different parameters to the desired



point. To obtain a single eigenvalue for a certain parameter combination, the file Parameters
requires the following information:

itask=l to indicate the desired task

iev I the number of the first eigenvalue parameter

iev2 the number of the second eigenvalue parameter
par(k) k=l,-.- NPAR, the list of all parameters, including the initial guess for

par(ievl) and par(iev2).

6.3. Eigenvalue and Eigenfunction
This task is identical with itask=l except the coefficients of the Chebyshev series and the values of
the variables at the collocation points are evaluated. Except for itask, the specifications are the
same as in the previous section:

itask=2 to indicate the task

ievl the number of the first parameter to be found

iev2 the number of the second parameter to be found

par(k) k=l,..- NPAR, the list of all parameters, including the initial guess for
par(ievl) and par(iev2).

6.4. Tables of Eigenvalues

This task enables calculation of one-, two-, or three-dimensional tables of eigenvalues. The local
procedure (itask=l,2) must be performed at least once to provide a starting point for this task. The
values of ievI and iev2 that specify the eigenvalue are taken from the previous task. The required
input is:

itask=3 to indicate the desired task
kdim the dimension of the table

and kdim lines, each line containing:

kpar the parameter to be varied

kstep the number of steps

step the step size

The first parameter specified is varied in the innermost loop.

6.5. Curves in Parameter Planes

This task enables the direct calculation of neutral curves (or curves of constant amplification) and
other useful curves in the plane of two parameters with a third parameter completing the eigen-
value problem. The local procedure (itask=l,2) must be performed at least once to provide a start-
ing point for this task. To describe the input, we imagine a three-dimensional coordinate system
with the horizontal, vertical, and normal axes formed by the three parameters par(ivl), par(iv2),
and par(iv3), respectively, and a curve in the plane spanned by par(ivl) and par(iv2). Beginning at
some starting point provided by the local procedure, we want to proceed in one of the two possible



directions and find new points of the curve. All but the three parameters used as coordinates main-
tain the starting values along the curve. In particular, for a neutral curve, the growth rate in the
starting point must be zero. Since the parameters involved may have quite different orders of mag-
nitude, we have to choose proper scale values. For this step, we envision a plot of the curve on a
sheet of paper and choose the scales such that the curve looks "nice" without squeezing it in
either axis. In the scaled plot, the distance between points should be neither too large nor unneces-
sarily small Also, the plot has a "window" defined by the minimum and maximum of the vari-
ables plotted. The input required is as follows:

itask=4 to indicate the required task

and two lines, the first for the "horizontal" direction, the second for the "vertical" direction, each
line containing:

iv 1,2 the associated parameter

vgridl,2 the scale value

vminl,2 the minimum value

vmaxl,2 the maximum value

The iteration for the eigensolution can neither use par(ivl) (if the curve's tangent is horizontal) nor
par(iv2) (if the tangent is vertical) as the first eigenvalue parameter but internally iterates normal to
the curve in the plane of par(ivl), par(iv2). The second eigenvalue parameter is par(iv3). The
input continues with one line specifying this third dimension of the eigenvalue problem:

iv3 the second eigenvalue parameter in the "normal" direction

The next line specifies

angle the initial direction in the plane of the curve as the positive or negative angle
(in degrees) measured from the horizontal axis

radius the distance between points along the curve in scaled variables

and the final line specifies

npoints the number of points (or arc length in multiples of the radius) to be traced.

A safe recipe for the choice of the various data cannot be given here since it depends on the
(assumed unknown) properties of the curve. A reasonable choice for the scale values would be the
order of magnitude or the physical values of the parameters par(ivl), par(iv2) of some point at the
curve. In the case of plane Poiseuille flow (see Examples), with par(ivl)=Re, par(iv2)=a,and
par(iv3)=or, the choice vgridl=10000, vgrid2=l would be almost the same as vgrid=20000,
vgrid2=2 and be as good as vgridl=5772, vgrid2=l. Note, however, that the radius is the distance
in scaled variables. With a radius of 0.01, the maximum physical steps in the horizontal direction
would be 100, 200, or 57.72 in the three cases, while the maximum vertical steps would be 0.01,
0.02, or 0.01. These steps should be small enough to obtain a nice plot (and rapid convergence)
and because problems may arise if the distance between multiple branches of the curve is smaller
than the radius. If the steps are too large for convergence, or if the specified radius exceeds r/8th
of the curve's radius of curvature, the radius will be automatically divided by increasing powers of
2. hence you may obtain 2, 4, or more points per step. The procedure tries to double the reduced
internal step size after every point until it proceeds with the original radius. Hence, the
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continuation procedure will slow down in regions of strong curvature.

Ideally, the angle (in degrees) would be the positive or negative angle between the horizontal and
the curve's tangent in the starting point. The two signs correspond to the two directions in which
the procedure can proceed. The choice of the angle is not critical as long as the radius is
sufficiently small and the initial direction is not normal to the curve. Trial and error with
npoints=4 and a small radius will help (the angle and radius for the last point are printed). Note

that the angle changes with the ratio vgridl/vgrid2.

The procedure terminates if the number of (full) steps exceeds npoints, if the distance between any
point (after the third) and starting point is less than the radius (to prevent unnecessary loops

through closed curves), and if the curve crosses the window given by the minimum/maximum
values. It is often desirable to specify extreme values for npoints or the window size.

6.6. Close and Reopen the Input File

This task enables to suspend the program execution, edit or replace the Parameters, and resume

execution either on a multi-window workstation or on a terminal under Unix. The input is as fol-
lows:

itask=-l to indicate the required task

The program will close the file Parameters and pause until continuation is requested. During this
time, the file can be changed. After continuation, the new Parameters will be read starting at the
top.

7. The Real Version 3
The real version of linear.x performs the same functions as the complex version yet permits some
simplifications and higher efficiency. The physics files common.ins and bstate.ins are unchanged.
There is no complex.ins, and vector.ins neither provides nor accepts complex data. In the
Definitions, all parameters are real (ipar2 is not read). In the Parameters for itask=O, ievl charac-
terizes the eigenvalue. Note that the spectrum may contain complex eigenvalues. Only real eigen-
values can be handled by the other tasks. For the local procedures, itask=l, 2, only ievi is read.
The input for table, itask=3, is unchanged. For curves, itask-4, the parameter iev3 for the normal

direction is absent. Source files with the same name in the real and complex version may be I
different.

8. Installation I
The installation procedure is easy for Unix systems. To conform with the original, make and use a
new directory

mkdir w.Iinear

cd w.linear
tar xvf IdevItape

to read the tape (cartridge) where Idev/tape stands for the proper device. There will be three new

directories: w.doc with this and other text (to be printed with eqn linear.txt I ptroff -ms on a I
Postscript printer), w.real with the real version and examples, and w.complex with the complex

I



version and examples. Edit the Makefiles in w.real and w.complex (especially the FFFLAGS for
f77, CPFLAGS for cpp, and LDFLAGS for id to reflect your system if necessary. The C prepro-

cessor cpp is used since include statements and conditional compilation are not standardized and
sometimes missing in Fortran. Note the setting of CASE to the specific directory (here w.example)
that contains the physical fies, Definitions, and Parameters. Run

make

There may be some warnings (e.g. for loops that are not executed if NEQU=1). If no errors occur,
you will find the executable code in the proper subdirectory (here w.example). The output of the C
preprocessor (complete set of Fortran files) will be in w.code. The command

make clean

removes w.code, the object programs, and prompts whether you want to delete the executable
code. Execute

cd w.example
linear.x

If the code runs to completion, you should find all the files given in the subdirectory w.results,
with identical content.

I recommend to prepare new applications in directories on the same level as w.examples and to set
CASE in the Makefile properly. The work on a specific problem would then be performed in a
single directory under either w.real or w.complex.

If you work on a non-Unix system, you may replace the cop directives (with the # sign in column
1) by other directives such as the INCLUDE statement (e.g. VAX-VMS Fortran). Directives for
conditional compilation such as #ifdef CRAY can be replaced or commented by hand.

9. Examples

Two examples are included to illustrate the use of the real and the complex version. These exam-
ples show a variety of applications of the code that will not be discussed in detail. You may con-
sider keeping the examples for later reference.

For the real version, the example is the small-gap approximation to the Taylor-Couette problem for
axisymmetric disturbances in the form

(D2 - r -_ )(D2 -_ 2 )u + Tacz2g(y)v = 0 (3)

- u + (D2 _ a _G)v = 0 (4)

where g(y) = I + (co - l)y with o) = 0 for a fixed outer cylinder, and Ta, a, and a are the Taylor
number, wavenumber, and growth rate, respectively. The boundary conditions are

u=Du=v=0 at y=0,1 (5)

The example for the complex version is the Orr-Sommerfeld equation for three-dimensional distur-
bances

1(D - - y- iRe {U - }))(D 2 - y) + ictRe(D 2U)]v = 0 (6)

with the boundary conditions
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v = Dv = 0 at the boundaries (7)

where y = a2 + 32, a and 13 are streamwise and spanwise wavenumbers, respectively, Re is the
Reynolds number, and (0 the frequency. The basic flow is set to plane Poiseuille flow,

U(y) = I - y2, between boundaries at y = ±1. For the assignments to PVEC ( .. ,0), it is useful I
to rewrite eq. (6) in the form

D 4v + [-2y- iRe [aU - )]D 2v + [y(y + iRe {aU - o})) +Re a(D 2U)]v = 0 (8)

The equation is written in terms of the complex frequency wo but can be changed easily to the com-

plex phase velocity c = 4wa. We consider 13 as real while a is in general complex. Hence, we

can use the local procedure for both temporal and spatial growth. However, we can use the global
procedure only to obtain the spectrum of temporal eigenvalues wn.

The wavenumber a appears nonlinearly in eq. (8), more precisely, up to the fourth power, a'. To n
obtain a spectrum of spatial eigenvalues a, eq. (8) must be rewritten in form of four equations that
are linear in a, e.g. 42

D4v1 + (-2132 +iReeo)D 2vI + 134vI + (-iReUD2v 2 + Re (D2U)v 2  (9a)

- 2D2v3 + (202 - iRe(Ov 3 + iReUv4 + av 4 = 0

avI-v 2 =0, av 2 -v 3 =0, av 3 -v 4 =0, (9b,c,d)

where vi = v. This form is not unique since a-independent terms in v,,, n > 1, can be converted
into a-dependent terms in v,_ 1 by using eqs. (9b, c, d). The system has now NEQN=4 and four U

variables v,, with identical boundary conditions (and symmetries). Obviously, solving this larger

system (9) is more costly than solving the equivalent equation (8).

10. Availability

The complete code of about one half mega-byte is available as tarfile via ftp, on cartridge tape

(Apollo, Sun, HP, SGI-150MB), or 5 1/4 inch floppy (Apollo). A second version with straight

ASCII files for non-Unix systems is in preparation. To obtain a copy of the code, contact me by
mail or E-mail: tht@apollo.eng.ohio-state.edu.
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THEORY OF INSTABILITY AND TRANSITION

Thorwald Herbert

Department of Mechanical Engineering
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1. Introduction

The theory of instability and transition has seen remarkable progress over the past decade. For
certain classes of flows such as the B nard and Taylor problem, the progress is largely due to the
application of new analytical techniques and the ability to describe the dynamics by relatively sim-
ple amplitude equations. This analytical work is supported by current experimental and computa-
tional studies.
The attempt to model, simplify, and analyze the dynamics of through-flow systems, especially
boundary and mixing layers, with similar techniques has not yet succeeded. Some of the reasons
are the lack of a true Reynolds number (as in boundary and mixing layers), the unavailability of
nonlinear equilibrium motions (in boundary and mixing layers, pipe flow, plane Couette flow), and
the nonlinear subcritical instability and consequent "snap-through" transition in the few remaining
prototype flows (e.g. plane Poiseuille flow). Once the flow becomes unstable, it develops through
some stages of distinguished character into a turbulent flow without settling into any regular
motion or stable equilibrium. Nevertheless, equilibrium states, bifurcation points, and symmetry
breaking have been revealed for plane Poiseuille flow and these results have strongly influenced the
theoretical developments for other flows, in particular for boundary layers. Owing to the complex-
ity of the dynamical equations, the theoretical work on through-flow systems has strong computa-
tional aspects and is in many cases closely related to spectral simulations of nonlinear instability
and transition.

New results have been obtained and methods of analysis have been developed for various classes
of flows that permit mathematical rigorI Parallel flows with velocity vector V = (U(y),0,W(y)) or V = (U(y),0,0), such as plane

Poiseuille flow. Here, U is in the streamwise x direction.

* 3D flows with V = (U, V, W) and V = V(y, z), as in rectangular ducts, or V = V(r, 0), as in
curved or elliptic pipes.

0 Periodic flows with periodicity in different variables.

The class of periodic flows has found broad interest owing to their frequent occurrence in practical
applications and as a source of parametric secondary instabilities. The main groups studied are:

• Time periodic with V = (U(yt),0,0) and U(y,t) = U(y,t + X,) (Davis 1976),
* Periodic in the cross-stream direction with V = (U(y),0,0) and U(y) = U(y + Xy) (Gotoh &

Yamada 1986),

* Periodic in the streamwise direction with V=(U(x,y),V(x,y),O) and V(xy) =
V(x + Xy).

The last group incorporates 2D equilibrium states in parallel flows as they develop in th- nonlinear
stage of primary instability (Orszag & Patera 1980, Herbert 1981, 1983, Nagata & Busse 1983,



Pierrehumbert & Widnall 1982). Even the states associated with traveling waves are steady in a
Galilean frame that moves with the phase velocity of the waves.

With appropriate approximations, new analytical and numerical tools have also been developed for
the technologically important class of weakly nonparallel flows where the basic flow involves the
boundary layer approximation (Hall 1983, Herbert & Bertolotti 1987). The local approach (leading
Zo ordinary differential equations) is complemented or replaced by solving parabolic partial
differential equations for given initial conditions. Besides nonparallelism, the nonlinear evolution
of the disturbance field can be studied. The need for initial conditions, however, poses a new chal-
lenge to clarify the receptivity issue.
Many of the tools developed and established for incompressible flows are currently ported to tackle
the stability of compressible flows. In this area, stability theory has barely progressed beyond the
classical linear analysis, and the physical mechanisms of instability still await clarification and
deeper understanding.

2. Weakly and Strongly Nonlinear Theories

The charge to this panel is to place emphasis on the strongly nonlinear area of theory. Considered
that the phenomena under consideration are governed by the Navier-Stokes equations in more or
less complex form, one has to compromise. Direct numerical simulation is feasible but more a
replacement for laboratory experiments, not theory. Asymptotic theories for large Reynolds (or
other) numbers lead to simplified equations that allow closed-form solutions (in exceptional cases)
or ease numerical solutions to nonlinear problems (see panel discussion, F. T. Smith). These
theories based on early asymptotic studies (Lin 1955) enlist impressive results for linear problems
and local (e.g. receptivity) phenomena that can be captured within a single asymptotic structure.
However, the structures are different for solutions near branch I (triple deck) and branch II (five
decks) of the neutral curve. Therefore, studies of physically relevant nonlinear mode interactions
(as those causing secondary instability) or the streamwise evolution of the disturbance field seem
outside any single structure of the asymptotic theory. Moreover, various phenomena in the transi-
tion process critically depend on the combination of physical parameters and may not be accessible
to asymptotic methods for high Reynolds numbers.
Linear and "weakly" nonlinear (i.e. perturbation) theories are not as ineffectual as the notation
suggests. "It is not the process of linearization that limits insight. It is the nature of the state we
choose to linearize about." (E. T. Eady). Moreover, perturbation methods can solve strongly non-
linear problems provided they are rational in the sense of Van Dyke (1975), consider higher-order
terms, and are combined with the arsenal of tools for analyzing, improving, and extending the con-
vergence of perturbation series (Van Dyke 1984). The weaknesses of the weakly nonlinear theory
are essentially the inappropriate formulation in earlier work (Herbert 1983) and the lack of gui-
dance for the choice of the lowest-order basis. When properly applied, there should be in fact no
difference between a weakly nonlinear or perturbation theory, a nonlinear theory, and a truly non-
linear theory. Perturbation methods can be very relevant to obtain insight into the nonlinear transi-
tion process.
In the following, we discuss three areas of theoretical/numerical development that contribute to
understanding the transition mechanisms, and moreover, provide new means for quantitatively
analyzing and predicting transition. The incompressible flow over a flat plate with zero-pressure
gradient is chosen as an example while applications range to other shear flows, including three-
dimensional and compressible boundary layers.
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3. Nonlinear Stability of Nonparallel Flows3Boundary layers, mixing layers, jets, and wakes are interesting subjects to stability studies, but are
solutions to the Navier-Stokes equations only within the boundary-layer approximation. Usually,
the stability analysis at a fixed streamwise position (and Reynolds number) neglects the streamwise
variation and small transverse velocity, and assumes a locally parallel flow. While this assumption
can be tolerated for disturbance waves with sufficiently large streamwise wavenumbers a (Herbert
& Morkovin 1980), it is incorrect for small wavenumbers, especially for a = 0. The most affected
disturbances with cc = 0 are longitudinal vortices, including G6rtler vortices, and nonlinear distor-
tions of the mean flow.

For G6rtler vortices, the effect of the transverse velocity is of first crder, not of nrder 0 (Re - 1)
(Herbert 1976). It is necessary, therefore, to pose the stability problem as an initial-boundary-value
problem for parabolic partial differential equations (Hall 1983), in essence the 3D boundary-layer
equations for a spanwise periodic flow. For initial conditions in the form of traditional normal
modes, some features of earlier parallel-flow and weakly-nonparallel-flow results are qualitatively
reproduced (Day, Herbert, & Saric 1988), however, the local growth rates and integrated N factors
are quite different and depend on the initial conditions. The concept of a branch I of the neutral
curve, the traditional go-sign for instability and the integration of N factors, does not carry over to
the new approach. Considered that N factors are a cornerstone of transition prediction in engineer-
ing practice, theory should not only push forward into virgin territory but also scrutinize all those
convenient assumptions that were made along the way.

TS waves with a > 0 cannot be described by the boundary-layer equations, but the effect of non-
parallelism on the linear stability can be captured by perturbation methods. Earlier work suffers
criticism since the perturbation approach is not rational in Van Dyke's sense. Moreover, the
approach cannot incorporate nonlinear effects of finite TS amplitude. To overcome these
deficiencies, Herbert & Bertolotti (1987) introduce a multiplicative decomposition of the waves in a
nonparallel flow into a strictly periodic wave function and an amplitude function. Within the
boundary-layer approximation, the amplitude function is governed by a parabolic differential equa-
tion that can be solved by a marching scheme for given initial wavenumber and initial amplitude
distribution. The streamwise change of the complex wavenumber can be extracted from the ampli-
tude function. A method to obtain the local solution to the stability problem similar to earlier work
has been derived without further approximation. This method requires simultaneously solving for
the local wavenumber, amplitude function, and streamwise amplitude variation, thus solving for all3 terms of order 0 (Re - 1) at once.

The parabolized stability equations (PSE) permit accurate and very efficient calculation of spatial
growth rates and N factors, but moreover, they offer various capabilities not previously available.
The equations contain both the unsteady boundary-layer equations and the Orr-Sommerfeld equa-
tion as special cases, and therefore govern the link between their solutions (Goldstein 1983)
without using matched asymptotic expansions. This link is key to the receptivity for sound. The

PSE can maintain nonlinear terms and describe the evolution of harmonics and mean flow distor-
tion. The PSE can also be utilized to analyze mode interactions and the linear and nonlinear stages
of secondary instability without the need for a downstream boundary condition.

The results of both local and marching solution of the PSE for linear TS waves agree and largely
confirm Gaster's (1974) results. In contrast to the findings of Saric & Nayfeh (1977) and Smith
(1979), the incorporation of nonparallel effects does not improve the agreement of the neutral curve
with the experimental data. The neutral curve shown by Saric & Nayfeh is based on a different
measure for growth than that used in the experiments. We conclude that the disagreement betweenU

I



theoretical and experimental results is caused by experimental inaccuracies combined with the sen-
sitivity of the problem (see panel discussion, W. S. Saric). The results of the marching scheme for
the nonlinear development of TS waves are consistent with the weakly nonlinear parallel-flow
results of Herbert (1974) and Itoh (1974), and in perfect agreement with numerical solutions to the
Navier-Stokes equations (Bertolotti, Herbert, & Spalart 1989).

4. Linear Secondary Instability

Significant progress in the analysis of the transition process has been achieved by the theory of
linear secondary instability of shear flows (Bayly, Orszag, & Herbert 1988, Herbert 1988). The
concept of a three-dimensional secondary instability parametrically excited by the primary TS
waves in a boundary layer was first used in a largely unnoticed paper by Maseev (1968) and
revived by Herbert & Morkovin (1980).
In a coordinate system moving with the wave speed, a parallel flow with a superposed wave of
fixed amplitude is strictly periodic and its linear stability is governed by a Floquet system of
differential equations with periodic coefficients. General form, properties, and classification of dis-
turbances can be derived with mathematical rigor. For cases like the 2D periodic equilibrium
motions in a plane channel that are associated with nonlinear TS instability, the "primary instabil-
ity," parametric resonance can lead to "secondary instability" with respect to a variety of 2D or
3D, subharmonic, fundamental (peak-valley splitting), or combination modes. The physical
mechanism of this instability rests on tilting and stretching of vortices periodically arranged by the
primary wave and is essentially of inviscid nature (Bayly, Orszag, & Herbert 1988). Accordingly,
the growth of secondary modes on a convective scale can be much stronger than the slow, viscous
growth of TS amplitudes.
Physical mechanism and classes of secondary modes are common to a wide variety of unstable
flows. Unstable boundary layers exhibit the same types of secondary instabilities (Herbert 1988).
For boundary layers, applicability of the Floquet analysis requires some approximations: the
parallel-flow assumption and the neglect of the TS-amplitude growth. Both these approximations
are well justified in regions of strong secondary disturbance growth. (These approximations need
scrutiny, however, for other primary disturbances such as Grtler vortices or cross-flow vortices.)
With the new concepts for incorporating streamwise changes discussed above, the assumptions of
earlier work can be relaxed.
The Floquet theory of secondary instability provides convincing explanations for numerous puz-
zling observations and establishes a framework for quantitatively studying the later stages of transi-
tion. Formal and numerical results are in encouraging agreement with detailed experimental data
for subharmonic modes (Kachanov & Levchenko 1984) and fundamental modes (Klebanoff,
Tidstrom, & Sargent 1962, Cornelius 1985) in the Blasius flow. The predicted characteristics of
combination modes are consistent with the scarce set of observations.

Combined with numerical results, the theory also permits asymptotic studies that provide guidance
for properly modeling the primary-wave interaction in weakly nonlinear theories. Craik's (1971)
resonant triad appears as a special case of subharmonic resonance as the TS amplitude tends to
zero. Other weakly nonlinear theories have not been found relevant to the explanation or quantita-
tive analysis of the secondary instability. Smith & Stewart (1987) have developed an asymptotic
theory of the subharmonic resonant-triad interaction based on a triple-deck structure. Their results
for the experimental conditions of Kachanov & Levchenko disagree with those provided by the
Floquet theory (and the experiment) in various aspects such as the wave angle, growth rate, and
streamwise variation of the growth rate. The discrepancies cannot be removed by incorporating the



nonlinear interaction between TS wave and 3D subharmonic mode. A possible explanation may be
the difference in the physical mechanisms. In the experiments and in the Floquet theory, the
subharmonic secondary instability originates from the interaction of an upper-branch TS wave with
a lower-branch subharmonic wave, while the triple-deck structure is appropriate only for lower-
branch waves.
Both temporal and spatial growth concepts have ieen pursued with the Floquet theory. Other than
in Gaster's transformation for primary disturbances, the leading term of the temporal-to-spatial
transformation of growth rates for secondary disturbances is the phase speed of the primary wave
and higher terms are small. Hence, transformed temporal and directly calculated spatial growth
rates are very similar. This result explains some of the striking similarities between temporal
Navier-Stokes simulations and spatial experiments. The results of the Floquet theory have not only
stimulated numerous transition simulations but agree with their results and permit their interpreta-
tion up to the stage where nonlinear coupling between TS wave and 3D secondary modes comes
into play. The theory yet bears the advantage of not being bound to a pre-selected computational
domain that restricts the wavenumbers of the 3D disturbance field. The work of Spalart & Yang
(1987) with a large spanwise domain is a notable exception.

5. Nonlinear Wave Interaction
In the absence of a nonlinear interaction of the 3D secondary modes with the primary TS wave,
the secondary modes decay as their parametric excitation fades away. Analysis of the energy bal-
ance between mean flow, 2D wave, and 3D waves shows, however, that the 3D wave may feed
energy into the 2D field (Herbert 1988). This contribution to the 2D field increases quadratically
with the amplitude of the 3D mode and may halt the decay of the primary wave, thus leading to a
feedback loop for self-sustained growth of both 2D and 3D disturbance field. A more detailed
analysis of the processes involved (Crouch & Herbert 1989) is based on a perturbation method
expanding simultaneously in the amplitudes of primary and secondary modes to maintain the
mechanism of parametric excitation. Subharmonic and peak-valley-splitting route to transition turn
out to be quite distinct in their sequence of events. In both cases, however, the nonlinear interac-
tion can lead to either an ultimate decay of the disturbance field or to a simultaneous growth of 2D
and 3D components. The threshold conditions for such simultaneous growth can be exploited to
predict breakdown and transition in a given disturbance environment (Herbert & Crouch 1989).
The results for fundamental modes are in close agreement with the experimental data of Cornelius
(1985) up to the stage where an increasing number of spikes heralds the breakdown of the laminar
flow. Peak-valley splitting can lead to breakdown only if the 3D disturbance reaches a threshold
amplitude upstream of branch II. In contrast, subharmonic modes can cause self-sustained growth
even downstream of branch II as observed by Kachanov & Levchenko (1984) and Corke & Man-
gano (1987). The strong growth of the 2D component is owing to a purely forced 3D-3D interac-
tion while the TS amplitude reaches an almost constant level. The two main contributions to the
2D component can be clearly identified in the velocity profiles at different streamwise positions
measured by Kachanov, Kozlov, & Levchenko (1977). The theoretical results are in good agree-
mcnt with direct simulations of transition, although the number of Fourier modes in the streamwise
and spanwise direction is relatively small. The ability to represent the essence of the transition
process with crude Fourier approximations was also noted by Rozhdestvensky & Simakin (1984)
and Kleiser & Gilbert (1989).



6. Future Directions

Building on the encouraging results of the theoretical concepts, present work aims at their integra-
tion into an efficient and reliable tool to analyze a broader variety of flows and wave interactions,
especially those affected by nonparallelism. To further develop understanding and predictive capa-
bilities for transition, emphasis will be on

* Receptivity, in particular leading-edge receptivity, to provide the relation between environ-
ment and the initial and boundary conditions for the transition analysis.

* Breakdown and evolution of small scales, to provide the link between transitional and tur-
bulent flows.

* Compressible flows, to gain insight, predictive capabilities, and support for numerical simula-
tions.

In view of the difficulties of gathering detailed experimental data at high Mach numbers under
realistic conditions, the development of reliable theoretical and computational methods for studies
on transition in compressible flows has high priority.
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Summary
A perturbation method based on a simultaneous expansion for primary and secondary

modes of instability is used to study the flow field in the later stages of transition. Results
of the analysis are in good agreement with experimental data for amplitudes in excess of
5% that cause immediate breakdown. Threshold conditions for sustained growth of subhar-
monic modes past branch II are calculated. These conditions are presented both in terms
of branch II amplitudes and initial amplitudes.

1. Introduction

Boundary-layer experiments show that TS waves of sufficiently small amplitude harm-
lessly grow and decay. At larger amplitudes, the TS waves cause 3D structures in the
form of peak-valley splitting (Klebanoff, Tidstrom, & Sargent 1962), subharmonic modes
(Kachanov & Levchenko 1984), or combination modes. The occurrence of these 3D struc-
tures is a necessary prerequisite but no assurance for breakdown of the laminar flow.
Experimental and computational results (Kachanov & Levchenko 1984, Spalart & Yang
1987) suggest the existence of threshold conditions above which disturbance growth ulti-
mately leads to breakdown.

Onset and evolution of the 3D structures can be modeled as a parametric resonance
with the TS wave and are well described by the Floquet theory of linear secondary instabil-
ity (Herbert 1988). In this linear framework, howeve,', 3D modes ultimately decay since
the TS wave fades away downstream of branch 11. Therefore, breakdown must originate
from a nonlinear interaction between 3D modes and TS waves at certain levels of their
amplitudes. This interaction will change both the 2D and 3D disturbance field and dictate
either the decay of the modes or their continued growth toward the breakdown of the lam-
inar flow.

To analyze the nonlinear 2D-3D interaction, it is necessary to permit changes to the
mean flow and the 2D mode while maintaining the parametric secondary instability. This
latter requirement precludes application of the conventional weakly nonlinear models which
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were not yet successful in describing the secondary instability. We have developed an ela-

borate perturbation scheme based on a simultaneous expansion in primary and secondary
modes of instability (Crouch & Herbert 1986, Crouch 1988). The decomposed flow field

reveals intricate details of the interaction process unaccessible to experiments and computer

simulations. We outline the perturbation approach and present some of the basic results
with emphasis on the threshold phenomena.

2. Perturbation Analysis

We consider the stability of the Blasius boundary layer under the parallel flow

assumption. All quantities are nondimensionalized using the outer velocity, U., and the

reference length 8, = (vx/U.)" 2 which results in the Reynolds number R = U.8,/v = (Rj) r .

The flow is governed by the Navier-Stokes equations which we write in the form of a gen-
eralized nonlinear Squire's equation

(1V2) Th. _ _l. -- (vV 1 +  (V)v = 0, (1)
R az at az az az

and Orr-Sommerfeld equation
(IV2) V2 V- V V v- _-(v'V)

a a aX
+-(c).V) w + -(v.V) --- (W.V)u= 0 , (2)

ax z aZ
with the boundary conditions

u=v=w- 0 at y=O, (3)

u--l ,w--0 as y -+ , (4)

where (o = V x v = ( ,,) and v = (u,vw).

To examine the evolution of disturbances within the boundary layer, the velocity is

decomposed into

v(xy,z,t) = VOW,) + v(xyt) + v3(x,,z,t) . (5)

The function v0 is the Blasius profile, v, is the two-dimensional TS wave, and v3 contains

the 3D secondary mode and 2D as well as 3D interaction components. Following the
linear parametric approach, the function v, is considered a primary TS instability, i.e.

VI ;a' v3 initially. The self-interaction of the TS wave is neglected since its effects are
small compared to the 2D-3D interaction (Crouch 1988). Thus, the solution to the primary
instability problem is

vl(x,yt)=A(t)vA(x,y) (6)

In the absence of any secondary mode, A (t) would grow according to the TS growth rate.
To accommodate the feedback from a 3D secondary mode, the TS amplitude is decom-

posed as A = A * + A where A *i A. The component A' is temporarily assumed constant
when calculating the secondary and interaction modes v3. This component provides the

parametric forcing for the secondary instability. To capture the effects of the secondary
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mode on A, the component A evolves according to the third-order Landau equation

=aA A + aa2 B+ a2 AB (7)

The first term describes pure TS growth while the second term gives the modification

owing to resonance with a 3D self-interaction term of amplitude B2 . The third term

describes the effect of this 2D field at the next order.

Substituting eqs. (6) and (7) for v1 into eqs. (1) - (4) provides the governing equations

for v3. The third order expansion for v3 is

v3(x,y,z,t) = [ B vB(xy) +A B vA(xy) +B3 v 31 (xy) ] 2cospz

+ B2  V2(x+y) + AB2 vAo(xy) ]

+ [B 2 VB2(XY) + AB2 vA(x,y) ] 2cos2pz

+ [B3 vB3(xy) ] 2cos33z (8)

where A and B are functions of t. The first-order term B vB 2cospz is the 3D secondary
mode resulting from the parametric forcing with A VA. At second order, vAB modifies vy

due to A VA and v 20 modifies VA due to B vD. In addition, a second harmonic in 13 is gen-

erated, given by v. 2 . At third order, V.3l modifies the 3D mode as a result of the 3D

self-interaction, while vA20 modifies the 2D component. Also at third order, vA2 appears

owing to interaction of the 2D wave with the 3D second harmonic and v,3 is the 3D third

harmonic. The amplitude growth of the secondary mode is given by
dO
-=bB B +b ,AB + b,3 B . (9)

Here bB is the linear growth rate at the primary amplitude A, and bM describes the
modification owing to A. The total second-order growth rate of B is bB + AbW which is

directly related to the first-order growth rate resulting from a parametric forcing with
amplitude A *+ A.

Introducing the velocity expansion (8) and the Landau equation (9) into the equations
for v3, we obtain sets of equations governing the functions of xy at each order. The Flo-

quet theory provides each of these functions in the form

f(x,y) , fW(y)e" a ,t d = X (10)

where f_, is the complex conjugate of f,.. The modes with n even and n odd decouple

into two distinct classes of modes designated as fundamental and subharmonic modes,
respectively (Herbert 1988). Using spectral collocation methods, the equations and boun-
dary conditions governing the functions f. are converted into an algebraic system. For

numerically solving this system, the series (10) is truncated at 6i 4 and 20 collocation
points are used.
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3. Results

The evolution of disturbances for any set of parameters F = 106-(ov/U 2 , b = 10"P/R,
and initial values Ao, Bo of the amplitudes at Ro is controlled by Landau constants and the
corresponding velocity functions. Using the Landau constants at a sequence of locations
for R > R0, amplitude curves for A, A, and B can be calculated. In conjunction with the
velocity functions, these data provide the physically observable velocity distributions and
rms amplitudes (defined as the maximum of the streamwise component). Here we present
only a limited set of results in the large parameter space.

3.1 Amplitude Evolution

The early evolution of the 2D mode is described by the linear theory of TS waves.
For sufficiently large 2D amplitudes, 3D modes are excited, characterized by bB > 0. Pro-
vided the 3D amplitudes remain small, these modes initially grow but decay as the TS
wave vanishes. For larger 3D amplitudes of the order O(B) = 0 (A), a nonlinear 2D-3D
interaction takes place. The effects of this interaction depend on the 3D mode type
(subharmonic or fundamental), the initial amplitudes, and the parameters F, b, and R.

3.1.1 Subharmonic Modes

For subharmonic modes, the Landau constant a.1 is positive, a2 > 0, in some region

of F, b, R, and A. Interactions in this region lead to a continued slow growth of A. The
third-order constant aA82 is positive in a similar region, thus reinforcing the second order
effects. For higher frequencies (above F = 45) the region where a.2 > 0 extends to Rey-

nolds numbers R downstream of branch II. Sufficiently large 3D amplitudes lead to sus-
tained growth of the 2D wave, characterized by dA/dt > 0 past branch II.

Figure 1 shows the evolution of the components A, A, B, and the associated physical
amplitudes of the 2D and subharmonic components. These results are for a second-order
analysis at F = 124, b = 0.33. The Reynolds number at which sustained growth initiates is
designated R,. The dramatic increase in the 2D amplitude which was also observed in
simulations (Spalart & Yang 1987) results from the B2 component. During the decay of A,
the 3D amplitude experiences a decrease in growth rate. Figure 2 shows a comparison of
the amplitude curves with the experiment of Corke & Mangano (1987). The theory
correctly predicts the change in the subharmonic growth rate. The results are in good
agreement until breakdown occurs.

The principal effects at third order occur at larger amplitudes (above B = 5%). At this
order, the magnitude of A during the period of continued slow growth is larger than at
second order, while the difference between A and the total 2D amplitude is smaller. As a
result of bp, < 0, the 3D mode ultimately saturates. However, the value of R, does not
significantly change between second- and third-order results.
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3.1.2 Peak-Valley Splitting

For fundamental modes, the constant a.2 is negative, a2 < 0 (for all conditions F, b,

R we considered). However, the third-order constant aAB2 is positive over a significant
region of F, b, R which extends past branch II. With aB2 large and negative, interactions
at small amplitudes lead to decay of both modes downstream of branch H. Only the larger
growth rates aA at lower frequencies permit continued growth of the modes after onset of
the interaction. For larger amplitudes, the growth continues past branch 1H and at higher
frequencies since aB2 > 0.

The differences between second-order and third-order results are more significant than
for subharmonic modes. At second order, the amplitude curves at the peak and valley
positions are very similar to the first-order results. The third-order results, however, are
quite different, especially for larger amplitudes as shown in figure 3. At first (and second)
order, the amplitudes at peak and valley grow concurrently to very large values, while they
saturate at different levels when third-order terms are considered. Figure 4 compares the
third-order results with experimental data of Cornelius (1985) for F = 64.4, b = 0.44. The
theory is in good agreement up to the single-spike stage. The difference in saturation lev-
els between the theory and experiment may be a result of the limited number of modes
included in the theory.

3.2 Threshold Conditions

Although the breakdown process is highly nonlinear and probably involves some terti-
ary mechanisms for the generation of small scales, its initiation is clearly linked to the non-
linear evolution of secondary instabilities. The growth of TS waves occurs on a slow
viscous time scale over a relatively large streamwise distance. Secondary instabilities, on
the other hand, grow on a fast convective time scale. Starting at amplitudes much smaller
than the TS wave, secondary modes can reach the same order of magnitude within a frac-
tion of the region of TS growth. The occurrence of the nonlinear 2D-3D mode interaction
then produces radical changes over a yet smaller streamwise distance. When the interac-
tion favors continued growth, breakdown follows immediately. Therefore, predicting the
conditions for this interaction is "awfully close to predicting breakdown and transition"
(M. V. Morkovin).

For fixed values of F and 03, breakdown can be initiated at different R locations
depending on the initial disturbance amplitudes. As the initial amplitudes decrease, the
breakdown location moves downstream, until for sufficiently small values the disturbances
harmlessly fade away. The threshold conditions are specified in terms of the smallest dis-
turbance amplitudes that will ultimately result in breakdown. For small 2D amplitudes,
subharmonic modes have larger growth rates than fundamental modes and thus are the pre-
ferred route to breakdown (Herbert 1988). Subharmonic interactions at small amplitudes
are well described at second-order. If 3D amplitudes are also small, the 2D-3D interaction
occurs downstream of branch II. Thus the threshold conditions represent a demarcation
between amplitudes leading to sustained growth, and those leading to decay past branch II.
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At lower frequencies (below F = 45), the region of interaction leading to continued
growth is upstreari clf, or near, branch 11. For these frequencies, small amplitudes can lead
to breakdown just downstream of branch II without (or before) satisfying dA/dt > 0. This
development results from the weak 2D decay yet strong 3D growth which enables the 3D
wave to reach a high amplitude sufficient for initiating breakdown. Threshold conditions at
these frequencies must account for the actual magnitude of the 3D amplitude, not only the
conditions for sustained growth.

Higher frequencies have a region of interaction favorable to sustained growth which
extends well beyond branch I. Low amplitude interactions lead to decay, while larger
amplitudes cause dA/dt > 0 past branch II. Figure 5 shows the Reynolds number for sus-
tained growth, R,, plotted against the subharmonic amplitude at branch I for different 2D
amplitudes at branch II. This figure is for F = 124, b = 0.33. For large subharmonic
amplitudes, R, becomes increasingly independent of the amplitude values. Associated with
each 2D amplitude is a minimum (or threshold) subharmonic amplitude, below which sus-
tained growth does not occur. A plot of these branch II threshold amplitudes is given in
figure 6 along with values calculated for F = 64.4, b = 0.17. Amplitudes to the right of the
curves lead to sustained growth while amplitudes to the left ultimately decay. The effect
of frequency is only to shift the curve slightly. Using the appropriate N-factors, these
curves are projected to the initial amplitudes that are given in figure 7. This presentation
shows the critical link between breakdown and the background disturbance field. The
difference in frequency results in a shift by an order of magnitude of the initial amplitudes
necessary for breakdown.

4. Conclusions

By revealing the details of the 2D-3D mode interaction, the analysis contributes
toward clarifying the picture of transition. For peak-valley splitting at low amplitudes, the
3D mode has a damping effect on the 2D mode. Continued growth of the disturbance
modes owing to nonlinear interaction occurs only upstream of branch II and only for lower
frequencies. For larger amplitudes, the 3D mode can lead to a continued slow growth of
the 2D wave, thus allowing continued growth past branch II and at higher frequencies.

Subharmonic modes at higher frequencies can cause sustained growth of both the 2D
and 3D mode past branch 11. Evaluating the initial amplitudes necessary for sustained
growth provides a threshold condition for breakdown. Calculated thresholds change very
little for different frequencies when expressed in terms of branch II amplitudes. In terms
of initial amplitudes, the threshold values change by an order of magnitude between
F = 124 and F = 64.4. For lower frequencies, the subharmonic mode bem.omes large
enough to initiate breakdown without the condition of sustained growth being satisfied.
The second order theory provides no clear demarcation for breakdown under these condi-
tions.
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I ABSTRACT

Methods of the nonlinear stability theory are applied to analyze the dis-
turbance evolution in the three-dimensional stage immediately preced-
ing the breakdown of the laminar boundary-layer. A perturbation

scheme is used to solve the nonlinear equations and to develop a
dynamical model for the interaction of primary and secondary instabili-

ties. The first step solves for the two-dimensional primary wave in the
absence of secondary disturbances. Once this finite-amplitude wave is
calculated, it is decomposed into a basic-flow component and an
interaction component. The basic-flow component acts as a parametric
excitation for the three-dimensional secondary wave, while the interac-
tion component captures the resonance between the secondary and pri-
mary wave. Results are presented in two principal forms: amplitude
growth curves and velocity profiles. Our results agree with experimen-
tal data and results of transition simulations and, moreover, revea the
origin of the observed phenomena. The method described establishes
the basis for physical transition criteria in a given disturbance environ-

5 ment.
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1. Introduction

In the process of boundary-layer transition, an unstable ordered state under-
goes qualitative changes toward a disordered and chaotic state. Energy
extracted from the mean flow is transferred into disturbance waves that conse-
quently grow, interact, and change each other and the mean flow. Although cer-
tain qualitative changes necessarily occur, the details of the transition process
are not unique.

Studies of boundary-layer transition have revolved around the induction and
subsequent growth of disturbances within the boundary layer. Controlled experi-
ments in low-noise environments have shown distinct stages in the development
of these disturbances. The first stage is characterized by the onset of instability
to two-dimensional TS waves. The dominant mode (most unstable or of highest
initial amplitude) then grows within a virtually two-dimensional framework without
significant spanwise variations. At some point, however, these TS waves 'give
over' to a three-dimensional wave field. Once initiated, spanwise variations grow
rapidly and in general lead to the ultimate breakdown of the laminar flow.

The early work of Schubauer & Skramstad (1948) demonstrates the actual
presence of TS waves within the laminar boundary layer. For sufficiently small
amplitudes, these waves harmlessly grow and decay as the Reynolds number
varies downstream. However, if the amplitudes grow to larger values, peak-
valley splitting occurs and causes spanwise periodic variations of the flow
(Klebanoff et al. 1962). This disturbance field is characterized by a streamwise
wavelength equal to that of the TS wave and a spanwise wavelength of the
same order. Unlike the TS wave, these three-dimensional disturbances grow
rapidly and lead to breakdown within a few TS wavelengths.

Other experiments exhibit a second type of three-dimensional development
where the streamwise wavelength is twice that of the TS wave (Knapp & Roache
1968; Kachanov & Levchenko 1982). This subharmonic behavior is observed for
intermediate amplitudes of the TS wave. In addition to demonstrating the
occurrence of three dimensionality for lower disturbance amplitudes, these exper-
iments reveal the non-uniqueness of the transition process. The experimental
results have stimulated intense efforts to find the mechanisms associated with
the onset and evolution of the three-dimensional waves.

Most of the theoretical approaches belong to one of two categories, mutually
resonant interaction models (Nayfeh 1987) or parametric interaction models (Her-
bert 1988a). This distinction characterizes how the three-dimensional wave
interacts with the two-dimensional wave. The mutually resonant interaction
models consist of one or more two-dimensional waves and a pair of three-

-2-



dimensional waves that interact through resonance (Nayfeh 1985). The wave

amplitudes are considered to be of the same order so that an interaction occurs

without any bias given to the two-dimensional wave. At first order, these waves

are solutions to the two- or three-dimensional Orr-Sommerfeld equation or

Squire's equation. At second order, the two-dimensionaVthree-dimensional reso-

nance occurs, consisting of interactions between the different Squire and Orr-

Sommerfeld modes. The most successful of these models is Craik's resonant

triad (Craik 1971). Even though this model requires a priori a particular span-

wise wave number for resonance, it yields good results for low-amplitude two-

dimensional waves. In addition, Craik's model establishes analytically a subhar-

monic path to transition. The mutual interaction models seem justified for small

two-dimensional amplitudes but fail at larger amplitudes.

The parametric interaction model is based on the preeminence of the two-

dimensional wave at the onset of three-dimensionality. This model consists of a

two-dimensional primary wave of amplitude A and a three-dimensional secon-

dary wave of amplitude B (Herbert 1984a). Although both amplitudes are small
with respect to the mean flow, the secondary wave amplitude B is also con-

sidered small with respect to A. This assumption results in a linear Floquet sys-

tem governing the secondary wave. This system admits a wide variety of solu-

tions that vary in prominence depending on the value of A. For large values of
A, primary resonance produces the fundamental mode associated with peak-
valley splitting. At smaller amplitudes A, the principle parametric resonance

dominates and yields subharmonic modes. In the limit A -+ 0, the spanwise
wave number for maximum growth is consistent with Craik's mechanism. The
resulting disturbance profiles and amplitude growth curves (Herbert 1984a; 1985)

are in good agreement with the experiments of Klebanoff et al. (1962) and
Kachanov & Levchenko (1982)

The results of the parametric approach together with experimental data pro-
vide a consistent and operational model for the early stages of transition (Herbert
1988b). The first stage originates from primary instability, the onset and evolu-
tion of the TS wave. In the second stage, the TS wave reaches sufficiently large
amplitudes A to cause the onset and growth of a secondary instability. Once the
secondary amplitude B becomes comparable with A, the waves interact and pro-
duce changes in the primary wave, the secondary wave, and the mean flow.
This interaction initiates the third stage of transition that is characterized by the
breakdown of the laminar flow. The effects of B on A, however, are not accessi-
ble within the linear approach to the parametric interaction.
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Based on formulation and results of the parametric approach, Croswell
(1985) analyzed the energy exchange between mean flow, two-dimensional
waves, and three-dimensional waves for plane Poiseuille flow. This work estab-
lishes a possible feedback loop that could cause the self-sustained growth of the
three-dimensional wave. Under conditions of primary instability, the energy
transfer initially occurs from the mean flow into the two-dimensional wave. This
wave in turn acts as a catalyst (Orszag & Patera 1983) for the stronger transfer
of energy from the mean flow into the three-dimensional wave. A part of the
energy received by the three-dimensional wave is dissipated, but the major part
causes an increase in amplitude or is transferred to the two-dimensional wave.
As illustrated in figure 1, this chain of energy transfers suggests a feedback loop
provided the modified two-dimensional wave continues to act as a strengthened
catalyst. In this case, the three-dimensional wave undergoes self-sustained
growth. The final proof for the action of this positive feedback loop, however, is
outside the scope of the energy analysis.

The present study focuses on the mechanisms associated with the nonlinear
stages of the transition process. The details of these mechanisms are hidden in
the intricate interactions of finite amplitude waves. Therefore, we aim at reveal-
ing the conditions under which these waves interact to produce a disturbance
field that in turn will stimulate their own growth. Establishing such positive feed-
back is equivalent with a criterion for the onset of breakdown.

Our model of the transition stages is formulated for the geometrically simple
case of Blasius flow under the parallel-flow assumption. Recognizing the initial
prominence of the TS wave, this model extends the linear parametric model to
account for the mutual interaction between the primary and secondary waves.
This procedure requires a complicated decomposition of the velocity field since
the two-dimensional wave is both part of the basic flow and result of the interac-
tion. In addition to the mean flow and the TS wave (which constitute the basic
flow) and the three-dimensional disturbance, we introduce a new two-dimensional
disturbance that interacts with the secondary wave through mutual resonance
and captures the nonlinear effect of the secondary wave. The total two-
dimensional field contains both the TS component and the nonlinear
modifications.

To account for the rapid streamwise evolution in the three-dimensional stage
of the transition process and to maintain the parametric interaction, we apply a
step-by-step pseudo-marching scheme. As a first step, the finite-amplitude two-
dimensional primary wave is calculated in the absence of any three-dimensional
disturbances. This primary wave is then split into a basic-flow component and
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an interaction component. The basic-flow component provides the parametric
forcing that causes the three-dimensional secondary wave. The interaction com-
ponent captures the resonance effects between the primary and secondary
waves. Thus, while maintaining a parametric secondary wave, modifications to
the primary wave are permitted. The only restriction on the arbitrary splitting of
the primary wave is that the interaction component be 'small' compared to the
basic-flow component. By continually splitting and recombining the primary
wave, the resonance effects are distributed over the entire wave through the
pseudo-marching scheme.

This paper presents the key features of the interaction model, some results,
and their implications. Chapters 2 to 4 discuss the overall problem formulation
and the detailed approach to primary waves, secondary waves, and nonlinear
components. Chapter 5 describes the solution technique. Results are presented
in Chapter 6. These results have been selected to enable comparison with other
work and to demonstrate new findings. The final Chapter 7 gives an appraisal of
the model and discusses our perception of the processes leading to breakdown.

2. Governing Equations

The equations governing the motion of an incompressible fluid of kinematic
viscosity v are the continuity equation

V-v=0 (2.1)

and the Navier-Stokes equations

Dv +(v-V) V=-_Vp +V v . (2.2)
Tt R

Cartesian coordinates (x',y,z) are used and the velocity vector v has the respec-
tive components (u,v,w). The streamwise direction is x', the spanwise direction
z, and the surface normal direction y. The boundary conditions governing the
flow are

u=v=w=0 at y=0 , (2.3)

u-41 , v -4 , w-40 as y.oo (2.4)

Taking the curl of the momentum equation and using continuity removes the
explicit dependence on the pressure p and provides the vorticity transport equa-
tion
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R V 2  (v-V)CD + (00-V)v = 0 . (2.5)

These are three scalar equations for the vorticity components that are related to
the velocity vector through

V X v = o 1. ,,(2.6)
The reference quantities for nondimensionalization are 8r = (vx'IU. ) l 2 and U..
The Reynolds number is defined as R = U,8rlv. Taking the derivative a/az of
the il-vorticity equation leads to the generalized Squire's equation

Ls(v) - -tMs(v) + NS(v,v) = 0 (2.7)

where

LS(v) = (1 V2) 0- ' (2.7a)

Ms (v) - Thl (2.7b)az

az
Ns (v,v) = z(v.V) il + -- (o.V) v (2.7c)

Taking alax of the C-vorticity equation and subtracting a/az of the 4-vorticity
equation leads to the generalized Orr-Sommerfeld equation

L 0 (v) - I-M ° (v) + NO (v,v) =0 , (2.8)

where

L0(v) = (R*V2) 2v , (2.8a)

M° (v) = V2 v , (2.8b)

NO(vv) -- (v.V) + -(co.V) w + -(v.) -- (coV) u (2.8c)ax ax z az
To examine the evolution of disturbances within the boundary layer, the

velocity is decomposed into a one-dimensional mean flow, a two-dimensional pri-
mary wave, and a general three-dimensional disturbance,

v(x',y,z,t) = VO(y) + Vl (X',y,t) + v3(x',y,z,t) . (2.9)

The velocity vo is the mean flow, consisting of the Blasius profile subject to the
parallel flow assumption. The velocity v, represents a TS wave calculated as an
instability of the Blasius flow. The velocity v3 consists of the three-dimensional
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secondary wave as well as higher-order terms (both two- and three-dimensional)
produced by resonant wave interaction. Substituting (2.9) into (2.7), (2.8), (2.3),
and (2.4) and subtracting the equations for the mean flow yields

LoS(v 1) - -iMS(vj) + Ns(vlvl) + Las(v 3)at
a- -M(V 3)+ N s (vV 3) + NS(v 3 ,v3 ) =0 (2.10)at (3 v~3

LoO(vj) - -2-M°(v1 ) + NO(vl 3vl) + LOOM)

iMO(v3 ) + N° (v1 ,V3) + N° (V3 ,V3) = 0 , (2.11)
at

v 1 =v 3 =0 at y=0 , (2.12)

V1 - -) 0  , V3 - 0  as y--*oo (2.13)

For the stability analysis, vo is considered known. Therefore, we introduce new
linear operators Los (v) = LS(v) + N s (vo ,v) for Squire's equation and

LoO(v) = L°(v) + N°(vo,v) for the Orr-Sommerfeld equation.

3. Primary Wave

The first step in analyzing equations (2.10) and (2.11) is to consider the
two-dimensional mode v1 as a primary wave that independently satisfies

Los (vj) -t MS(v 1 ) + NS(vl,vl) = 0 , (3.1)at
Lo°(v 1 ) - -- M°(vj) + N°(vl,vl) = 0 .(3.2)

at

These equations contain the nonlinear self-interaction which governs the forma-
tion of a finite-amplitude two-dimensional wave in the Blasius mean flow. These
equations are solved using a perturbation expansion about the linear solution at
fixed R and a. Following Herbert (1983), the temporal growth concept is used to
obtain a Landau equation for the representative amplitude. This equation needs
extension, however, if the nonlinear interaction with the secondary wave is con-
sidered.

3.1 Fourier Expansion
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Because the coefficients in (3.1) and (3.2) are independent of x, i.e.
vo = (uo(y),O,O), the velocity v, can be expanded in a Fourier series in x'. Start-
ing from the linear solution and accounting for higher harmonics, the mean-flow
distortion, and the distortion of the linear wave itself yields

Vl(X"',yt =l rl(y, t)e e, 8 = ax" - y(t) ,(3.3)

k =.-.o

where Vl, is equal to the complex conjugate of V1, . In this form, the solution

can account for changes in both the frequency and growth rate at finite ampli-
tude. The function y(t) describes the temporal oscillation while the growth is con-
tained in Vlk(Yt). Substituting the expression (3.3) into eqs. (3.1) and (3.2) pro-
duces a set of coupled nonlinear partial differential equations in y and t.

3.2 Amplitude Expansion
Using perturbation methods, the set of partial differential equations gen-

erated from eqs. (3.1) and (3.2) is further reduced to a set of ordinary differential
equations. Since the harmonics of the linear primary wave v 1,(y,t) are of higher
order, we write the Fourier coefficients in the form

VIk(Yt) = A 'Vl,(y,t) , (3.4)

where A is the amplitude of the linear wave.

This form leads to a decoupling of the nonlinear equations since T1, contains no

terms smaller than O(Ak). The time derivatives in eqs. (3.1) and (3.2) together
with (3.3) and (3.4) produce coefficients that contain the growth rate a and the
frequency o (or wave speed Cr),

dA _y

a = (3.5)a=At a craLdt

Following the method of strained parameters, both the functions vk(y,t) and

the coefficient X = a - icic r are expanded in terms of the amplitude A. It can be
shown (Herbert 1983) that these expansion series progress in even powers of A,
resulting in

v,,(y,t) = vl,(y)A2p . (3.6)
p=0

= pA 2p ,p = ap -iac, (3.7)
p=0

Finally, substituting and collecting terms in like powers of A results in two
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coupled ordinary differential equations for each harmonic at every other succes-
sive order of A. The order of a function depends on both k and p. Similar

expressions and procedures are used when considering the secondary mode

and its interaction with the primary wave.

As a result of this procedure, the expansion for the primary wave up to third
order is

vl(x',y,t) = -- [A2V1o(y)] + [Avlo(y) + A3Vl,,(y)]ei e

+ [A 2V1 2(y)]e i2e + [A3Vl,(y)]e i3e + c.c. (3.8)

In addition to the fundamental wave, v1 now contains a mean-flow correction and

a second harmonic. The growth rate and wave speed take the form

dA= A2a, (3.9)
A; dt

cr = Cro + A2Cr, (3.10)

Given an initial amplitude, eq. (3.9) describes the amplitude growth in time while
eq. (3.10) provides the corresponding wave speed. The third-order solution con-
sists of the velocity functions vl,o, vl,, v1.,, vl, , and the constants ao , a1, Cro, cr,

that are independent of the value of A. The actual velocity functions in eq. (3.3),

the growth rate, and the wave speed, however, depend on the value of A.

In section 4, the effect of the secondary wave on the amplitude A will be
incorporated. According to eqs. (3.8) and (3.10), this effect will immediately
influence velocity functions and wave speed. However, to fully capture the
interaction effects, additional functions and constants must be included in the
expansions.

3.3 Two-Dimensional Basic Flow
Given a fixed amplitude A* and the third-order solution for the primary wave,

v1 can be substituted into eqs. (2.10) and (2.11). Linearization in v3 provides the
formal basis for the analysis of parametric secondary instabilities. At the same

time, this linearization removes the terms crucial for the modification of the pri-
mary wave in the presence of a finite-amplitude secondary mode. Therefore, to

study the two-dimensional/three-dimensional wave interaction, the nonlinear
terms in v3 must be retained. Since the secondary mode is permitted to grow or
decay, the two-dimensional wave and its amplitude A will vary in time while A*
must be held fixed for the Floquet analysis to be valid.
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To overcome this dilemma, we decompose the primary wave amplitude into
a fixed component A* and a variable component A, A = A* + A, where A .V, A*.
The actual choice of A* and A is arbitrary provided that A satisfies equation
(3.9) in the absence of any secondary wave. With this decomposition, the two-
dimensional wave can be split into a basic flow component that contains only A*,
and a perturbation that contains also the variable A. The basic flow interacts
parametrically with the secondary wave (one-way interaction), while the perturba-
tion interacts through resonance (two-way interaction). Since A* will be
predefined, only A needs to be determined to obtain A and to fully define the pr-
mary wave.

Substituting for A in eq. (3.8) and collecting coefficients in like powers of A
yields

v1 =v 1- + 01 , (3.11)

where vl* contains all terms independent of A and constitutes the known basic

flow. The second term Q, can be written as

91 = AvA + A2 vA2+ A3 VA3 +O(A)

i.e. as a perturbation expansion of 91 in terms of the amplitude A. Substitution
for A into eq. (3.10) gives the expanded form of the wave speed

Cr = Cr* + Cr (3.12)

Finally, eq. (3.9) takes the form

dA * +, = (Aao + A 3a) + A(a ° + 3A *2a)

dt dt

+ A 2 (3A*al) + A 3 (a,) + O(A*S) (3.13)

Isolating the terms depending only on the amplitude A* provides
dA * .3A= A*a o +A a1 , (3.14)
dt

while the growth of A owing to self-interaction of the primary wave is governed
by the equation

d, = A(ao + 3A2 a,) + A2(3Aal) + A3(a,) + O(A*)
dt

or, in other form,

dA - -2 3

dt = AaA + A aA2 + A3 aA3 + O(A) (3.15)
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Thus far, we have not considered the feedback of the secondary wave on the
primary wave. In the absence of this feedback, the primary wave v, satisfies
eqs. (3.1) and (3.2).

4. Secondary Wave and Interaction Modes

The interaction of the primary and secondary wave causes two effects.
First, the interaction modifies the primary amplitude, A, owing to higher-order
resonances with the secondary wave. In this case, eq. (3.15) acquires additional

terms that cause residuals RS(9 1) and R0 (Ql) in eqs. (3.1) and (3.2), respec-

tively. The exact form of these residuals is yet to be determined. Second, the
interaction modifies the disturbance velocity functions. To account for this effect,
two-dimensional functions are included in v3 .

Subtracting eqs. (3.1) and (3.2) from eqs. (2.10) and (2.11), respectively,
yields the governing equations for the secondary and interaction modes

L°S(v 3) - RS(e 1 ) - -tM(v 3 )+ NS(vlv 3)+ NS(v 3,v3) =0 , (4.1)
Mo (v34+.2)N

Lo°(V 3) - R0(Q1 ) - - MO(V 3) + NO(vl,v 3) + NO(v 3 ,v3) = 0 (4.2)

Substituting v1 = vj* + Q, provides

L0s (v3) + L 1 s(v 3) - R5 (Q 1) -- M s (v 3 )

a t
+ N s (91,v 3) + N s (V3 ,V3 ) = 0 , (4.3)

Lo°(V 3 ) + L1
° (v 3) - R0 (Q1 ) - -kMO(v 3)

at
+ NO(e 1,V3 ) + NO(v 3 ,v3) = 0 (4.4)

Since vl* is considered known, new linear operators LlS(v 3) = NS(vl*,v 3 ) and

L1
0 (v3 ) = NO(Vl*,V 3) have been introduced. Equations (4.3) and (4.4) contain

the linear parametric forcing of v3, the nonlinear cross-interactions between v3

and Q1, and the self-interaction of v3.

The self-interaction of the two-dimensional wave contributes only to the
mean flow and the two-dimensional field without affecting the three-dimensional
wave. The self-interaction of the three-dimensional wave, however, produces
both two- and three-dimensional higher-order terms. Therefore, N(Q1 ,v3) and
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N(v 3 ,v 3 ) together provide the primary/secondary interaction.

For the application of Floquet theory to obtain the secondary wave and the

associated interaction terms, the amplitude A* is assumed constant. This

assumption is in conflict with eq. (3.14) for the temporal evolution of A*. How-
ever, the relative variation of A* is small for small increments in time (or, for an

observer moving with the phase speed Cr, in space).

For constant A*, the variable coefficients associated with L1s and L1
° can

be simplified since the basic-flow component vj* is periodic in both x' and t. In

a Galilean frame moving with the two-dimensional wave, x = x'-y(t)/a , vj*

satisfies

vj*(x',y,t) = v1*(x,y) = v1*(x + ;x,y) , (4.5)

where X = 2n/cc is the wavelength. The time dependence of v1 * is removed.
Expressing the periodic component of the basic flow in terms of the stream func-
tion 4fj*(x,y) yields the standard form of the linear operators L1

S and L1
0 that

govern the secondary instability (Herbert 1984b).

4.1 Fourier Expansion
Since the coefficients in eqs. (4.3) and (4.4) are independent of z, the velo-

city v3 can be expanded in a Fourier series in z

V3 (X,y,z,t) = V3 ,(X,y,t) eimpz (4.6)

Including a time modulation e - i s(t) (similar to the primary mode) would have no

effect. The function 8(t) appears in the equations as the imaginary part of the
Landau constants for dS/dt but the system is real since the equations depend
only on p2. For real velocities the Landau constants are necessarily real.

Substituting the series (4.6) into eqs. (4.3) and (4.4) removes their depen-
dence on z. The nonlinear terms in N s (V3 ,V3) and NO (V3 ,V3) contain products of
Fourier series. Balancing the harmonics, the nonlinear operators can be rewrit-

ten as Ns(v 3,,v3,) and NO (v3,,v 3-), respectively. The indices . and v assume the

role of m in the series (4.6). Only terms with . + v = m contribute to the mth

harmonic equation. Substituting (4.6) into the continuity equation and dividing by
the index m for m * 0, yields for W3 .

1 u3,_ + v3,,_
iP3.M #0 .(4.7)m ax ay

Using this expression, w can be removed from eqs. (4.3) and (4.4). The case
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m = 0 is irrelevant since it describes two-dimensional resonance terms with the
spanwise velocity component identically zero.

4.2 Amplitude Expansion
The application of the perturbation method to the secondary and interaction

modes follows conceptually the same steps as for the primary wave. The pres-
ence of two interacting amplitudes, however, requires a more general approach
for the construction of the velocity functions and amplitude equations. The ampli-
tude equations can be developed up to arbitrary order by examining the interac-
tions and identifying those in resonance with the primary or secondary wave. A
similar approach was successfully used by Li (1986) to analyze the evolution of
the first and second harmonics for the Taylor problem.

Higher-order terms are generated by the nonlinear interaction of the linear
secondary wave BvB(x,y)ei0z and the first-order primary interaction term
AVA(X,y). Of particular interest are the terms associated with m = 0 and m = 1.
The terms with m = 1 are in resonance with the secondary wave. Constructing
v31 to third order and noting A = A (t) and B = B(t) provides

V3,(x,y,t) = B VB (X,y) + AB VAB(X,Y)

+ A2B VA2B(X,y) + B3 VB3(X,Y) (4.8)

The interaction terms with m = 0 are in resonance with the primary wave. To
third order, v3o becomes

V3o(x,y,t) = B2 VB2(X,y) + AB2 VA82(x,y) (4.9)

In addition to the functions in eqs. (4.8) and (4.9), the higher-order reso-
nance terms also generate Landau constants that describe the effect on the
amplitude associated with the particular resonance as part of the amplitude-
growth equations. Recognizing the resonances for m = 1, the amplitude-growth
equation for the secondary wave becomesIdB23 33(.0

d.= B bB + AB bAB +A 2 B bA2B+B 3 bB. (4.10)dt

Similar consideration of the resonances for m = 0 provides the total growth
equation for A

dA -A aA +A aA2+ A3 aA + B 2 a12 + A 2 AB2 (4.11)dt

The first three terms describe the primary self-interaction (3.15). The last two
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terms account for the secondary self-interaction and primary/secondary interac-
tion, respectively. These additional terms produce the residuals in eqs. (4.3) and
(4.4).

The result of the combined Fourier expansion and amplitude expansion is to
convert of eqs. (4.3) and (4.4) into a system of linear equations. To develop
these new equations, the expansions (4.6), (4.8), and (4.9) are substituted into
eqs. (4.3) and (4.4). Differentiation with respect to time produces coefficients
dAldt and dB/dt multiplying the operators M. These derivatives are replaced by
the Landau series (4.10) and (4.11). Collecting coefficients of BeiPz yields the
linear secondary equations,

L0s (VB) + L1s (VB) - bB Ms(VB) = 0 , (4.12)

LoO(VB) + Ll 0 (VB) - bB M0 (VB) = 0 (4.13)

Solving this eigenvalue problem provides the linear growth rate bs and the
corresponding velocity function vB (x,y).

At second order, there are equations for both two- and three-dimensional
terms. The coefficients of ABei Pz generate the equations for the secondary-
wave modification while the coefficients of B2eiOz give th6 equations for the
primary-wave modification. Higher-order equations are generated in a similar
way.

4.3 Floquet Analysis
The formal result of the perturbation analysis is a pair of equations for each

of the functions in eqs. (4.8) and (4.9). Since the coefficients in these equations
depend on x and y, Fourier (or normal-mode) analysis cannot be used to derive
ordinary differential equations. With the 'localized' assumption of a fixed ampli-
tude A*, however, the coefficients are periodic in x. This property allows the use
of Floquet theory to reveal the dependence on x.

Earlier work of Herbert (1984a; 1984b; 1985) for parallel shear flows pro-
vides a guideline to the present application of this theory. The general form of
the functions is ePx f(x,y) where f is x-periodic with wavelength .x. For the
case of temporal stability, the characteristic exponent p is set to zero. Thus the
functions of x,y can be written as a Fourier series with y-dependent coefficients
similar to the application of Fourier analysis. Owing to the coupling through the
x-periodic terms, however, we must solve for all functions of y in this series
simultaneously.
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To develop systems of ordinary differential equations, each of the functions
in eqs. (4.8) and (4.9) is expanded as

f (x,y)= fn(y)eindx , = (4f --,Y n(y ed = X (4.14)
n=- 2 Xx

where f-_n is equal to the complex conjugate of fn. When this expansion is sub-
stituted into the governing equations, a decoupling occurs between the modes
with n even and n odd. The modes with even n have wavelength X, and are
called fundamental modes. These fundamental modes originate from primary
resonance in the x-periodic flow. The modes with odd n have wavelength 2)Lx
and are designated subharmonic modes. These modes result from principal
parametric resonance (Nayfeh & Mook 1979).

5. Method of Solution

5. 1 Definition of Amplitudes
Calculating the secondary and interaction modes contained in v3 has been

reduced to solving sets of coupled ordinary differential equations. Associated
with the decomposition of the velocity field, however, is an ambiguity in the
definition of the amplitudes. In particular, the physical amplitudes can reside in
both the velocity functions and the defined amplitudes. To establish meaningful
evolution equations for A and B, a proper norm, or uniqueness condition, is
applied that ensures that the Landau constants contain the growth information
(Herbert 1983).

The solution of the first-order problem (4.12) and (4.13) results in an eigen-
value bB and an eigenfunction v1. The phase of this function is fixed by impos-
ing a local norm condition at a fixed point Yo in the profile. This point
corresponds to the maximum of the primary-wave function at some initial Rey-
nolds number. The principal reason for using a local norm instead of an
integrated norm is the simplicity of implementation, especially at higher order.

In the second- and higher-order problems, the equations are inhomogene-
ous yet the associated homogeneous problem may possess a solution. For a
nontrivial solution of the inhomogeneous problem to exist in such cases, a solva-
bility condition must be satisfied. This solvability condition determines the Lan-
dau constants. Our definition of the amplitude requires the real part of the
resonant higher-order velocity functions to vanish at Yo. This additional equation
permits considering Landau constant as an additional unknown in the solution,
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no matter whether or not the associated homogeneous problem possesses a
solution. Without explicit use of the solvability condition, we obtain unique solu-
tions for both functions and constants while the procedure ensures that A and B
are meaningful, though dependent on the chosen norm. Unambiguous physical
results for the velocity field are obtained by combining A and B with the velocity
functions.

To determine physical two- and three-dimensional amplitudes e.g. for com-
parison with experiments, we consider the total composite functions for the
streamwise component u and calculate the maximum rms fluctuation of appropri-
ate Fourier components as the physical amplitudes. The selection of these
Fourier components follows the experimental approach. The total two-
dimensional velocity function is the sum of the expressions (3.8) and (4.9).
Determining the amplitude of the disturbance component with frequency 0) (e.g.
Kachanov & Levchenko 1982) requires filtering out k = +1 from the velocity (3.8)
as defined in the series (3.3) and n = ±2 from (4.9) as defined in (4.14). Thus,
the total two-dimensional function becomes

U2 0 l XY,=U1 (x,y,t) k = 1 + u (x,y,t)In =2 (5.1)

The total three-dimensional function of wave number 13 is given by eq. (4.8)
where m = 1. This function is characterized by one of two frequencies, depend-
ing on the mode of secondary instability. The subharmonic mode at frequency
€/2 is obtained for n = +1 as defined in eq. (4.14),

US (x,y,t) = u3, (x,y,t) n = 1 (5.2)

The fundamental mode at frequency (o is obtained for n = 2,

uF (x,y,t) = u3, (x,y,t) In = 2 (5.3)

Both of these functions are multiplied by ei~z and thus have a net spanwise vari-
ation in the physical velocities.

Since both the fundamental and two-dimensional functions have the same
frequency, it is useful to define a new three-dimensional function which contains
the total velocity field at frequency co (e.g. Klebanoff et al. 1962). Since UF is
real, combining the velocity components (4.6) with m = +1 provides the real velo-
city

uw (x,y,z,t) = U2D (x,y,t) + 2cosp3z UF (x,y,t)

+ 2cos213z u 32 (x,y,t)I n = 2 + 2cos313z u3 3 (x,y,t)I n = 2 (5.4)

This function is of particular interest at two spanwise locations, the 'peak' z = 0
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and the 'valley' z = Xz12. At z = 0, U2o and uF combine in phase to produce the

characteristic peak-velocity function

Up (x,y,t) = U2D (x,y,t) + 2 UF (x,y,t)
+ 2 U32 (x,y,t) I n = 2 + 2 U3, (x,y,t) I n = 2 • (5.5)

At z = Xz/2, u2 0 and UF combine out of phase to produce the valley-velocity

function

UV (x,y,t) = U2D (x,yt) - 2 uF (x,yt)

+ 2 U32 (x,y,t) ln = 2 - 2 u3 3 (x,y,t) ln=2 (5.6)

We further introduce the rms velocity functions in the usual way, e.g. for the

subharmonic component

Us' = t2Re2(us) + 21m2(Us)) (5.7)

The physical rms amplitude is then defined as the maximum of the rms velocity
functions, e.g. US'max. Similar rms functions and amplitudes are calculated for

other components.

5.2 Numerical Method
The systems of ordinary differential equations created by the perturbation

analysis are solved by a spectral collocation method. The unbounded domain
y = [0, -) is mapped into the bounded domain 11 = [1, 0] using the algebraic

mapping 'T = yl(y + y). The parameter y controls the distribution of collocation

points within the boundary layer.

The velocity functions are expanded in finite spectral series of odd Che-

byshev polynomials. Because of the mapping applied, these polynomials impli-
citly satisfy the boundary conditions at infinity. The error introduced by using a
finite series approximation is forced to zero at certain collocation points yj

(Gauss-Lobatto points) across the ri domain.

The sizable equations derived during the problem formulation have been

verified by MACSYMA, a computer program for symbolic algebra. Starting with
the Navier-Stokes equations, we first developed the general form of the nonlinear
Orr-Sommerfeld and Squire equations for the three-dimensional flow. Based on

these equations we performed two different checks. First, we Fourier expanded
the velocity in x and z in terms of (n&, m13). This provides a general expression
for comparison with the numerical code. Second, we carried out each step in the
problem formulation in succession. This procedure begins with the Fuurier
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expansion followed by the amplitude and Floquet expansions. For each single

mode of wave numbers (ca, 13) the velocities are finally expanded in terms of odd

Chebyshev polynomials. The resulting symbolic algebraic system is transformed

into Fortran code and solved numerically by computer. The results provide a

benchmark for comparison with the more efficient hand-coded numerical algo-

rithm.

5.3 Pseudo-Marching scheme
The perturbation analysis and the numerical solution of the resulting equa-

tions yield the Landau constants and the velocity functions at any given Reynolds

number. The goal of the pseudo-marching scheme is to convert this 'local' infor-

mation into a continuous temporal or spatial evolution of the disturbance field.

Given initial amplitudes and integration of the amplitude-growth equations are the

building blocks for this conversion.

For ease of comparison with experiments, the temporal stability information

is recast in terms of a spatial evolution. Gaster's transformation (Gaster 1962)

allows rewriting the amplitude-growth equation (3.14) in terms of the independent

variable R. The governing equation for the basic-flow component of the primary
wave A* becomes

dA ° = 2 (A*ao+A ai) , (5.8)
dR Cg

where Cg is the group velocity, defined as cg = Cr + a(dcrldc). The primary

interaction amplitude A and the secondary amplitude B vary according to
dA = 2 ( A aA + A2 aA2+ A3 aA3 + B2 aB2+ AB 2 aAB2) (5.9)

dR cr

and
dB =2 (BbB+ABbAB+A2BbA2B+B bB3 ) , (5.10)

respectively. These equations are consistent with the transformations derived by

Bertolotti (1985) between linear growth rates of the secondary wave. He found

the phase velocity to be the leading term in the temporal-spatial transformation

for parametric secondary instabilities.

The simplest scheme for calculating the amplitude growths as a function of

R is based on a two-phase approach. This scheme begins with given initial

amplitudes A*, A, and B, at some Reynolds number R. The first phase consists
of calculating primary Landau constants and functions at successive R locations.
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Then, starting with the initial A*, the basic flow component of the amplitude is
extrapolated from one R location to the next using eq. (5.8). In the second
phase, the secondary and interaction constants and functions are calculated at
each R using the A* values. With initial values for A and B, these amplitudes
are then extrapolated to the next R location using eqs. (5.9) and (5.10) respec-
tively.

In this approach, the basic-flow component of the primary wave is
unaffected by the presence of the secondary wave. If the effects of the secon-
dary wave on the primary wave are small, any changes to the basic-flow com-
ponent A* can be neglected. If these effects are not small, however, their
neglect would be a major shortcoming of the analysis. To avoid this problem, we
use the pseudo-marching scheme that permits accounting for the effect of the
secondary mode on the total primary wave.

The pseudo-marching scheme aims at distributing the various resonance
effects over both A and B. In the early stage of the amplitude evolution, the
primary/secondary interaction is dominated by the (one-way) parametric reso-
nance. However, as the secondary amplitude grows, mutual resonance
becomes increasingly significant. To accommodate the changeover from the
region of linear-parametric resonance to the region of significant mutual reso-
nance, the primary amplitude A is repeatedly split into A* and A and recom-
bined.

Given the initial values of the primary amplitude A and the secondary ampli-
tude B at some initial R, we specify the splitting parameter e = A/A and calcu-
late A = eA and A* = A - A. Solving eqs. (3.1) and (3.2) with the perturbation
scheme yields the constants and functions for the primary wave. With the
current value of A, we first calculate the basic flow and interaction functions vl1
and 91 and then determine the secondary and interaction functions and con-
stants. Based on the set of Landau constants, the amplitude growth equations
(5.8), (5.9), and (5.10) are integrated to obtain A*, A, and B at the next R loca-
tion. At this new location, the total primary amplitude is evaluated as
A = A* + A which completes one step. For the next step, the amplitude is again
decomposed using A = eA and A* = A - A, and the calculation procedure is
repeated.

This scheme provides an avenue for incorporating the changing basic-flow
amplitude A* and the appropriate modifications of the secondary and interaction
terms. The repeated redistribution of A between A* and A takes advantage of
the arbitrariness in this split. As long as A is small relative to A, the evolution
of B is independent of c. Since A must be small, however, the maximum step
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size in R is restricted such that A does not change 'too radically' relative to A*.
In regions of strong interaction the step size in R is automatically reduced if
A < 10- 5, and the integration is repeated. Controlling the splitting parameter e
and the step size in R is an indirect way to control the rate of exchange between
A and A*, and thus between mutual and parametric resonance. All the results
on the amplitude evolution given below are obtained with the pseudo-marching
scheme.

6. Results

6.1 Landau Constants
To numerically solve the equations, all summations must be truncated at

some finite value. We have chosen the minimum values for which a 'reasonable'
solution can be obtained (Crouch 1988). The Floquet system associated with the
streamwise variation is truncated at N = 3. The number of collocation points is
taken to be J = 20, which is sufficient for this analysis. The third truncation con-
cerns the order of the primary wave. Since the primary self-interaction produces
only a small change of 1%, say, in the Landau constants, this interaction is
neglected. A further reason for neglecting the self-interaction is the inability to
calculate the mean-flow distortion in the stable region at Reynolds numbers past
R11 (Herbert 1983). The remaining truncations concern the order of the perturba-
tion series for the primary/secondary interaction and the related spanwise Fourier
series. Most of the calculations are carried out to second order, requiring only
two Fourier modes. Third-order calculations with three spanwise modes are
used to investigate peak-valley splitting, which occurs at larger amplitudes.

Using this perturbation approach allows us to examine the interactions of
particular 'pieces' of the flow field. The Landau constants provide both the
strength and the creative or destructive nature of specific interactions. Up to
third order, the perturbation expansion (4.11), (5.9) involves five Landau con-
stants governing the evolution of the interaction component of the primary wave,
A. The first-order constant aA = ao + 3A° 2a, is essentially the linear growth
rate. A small correction accounts for the finite amplitude A*, even though A
could be considered infinitesimal. The constants aA2= 3A*a 1 and aA3= a1

describe the third-order self-interaction of the primary wave. These constants
contain both the mean-flow distortion and the second harmonic. Ignoring the
self-interaction reduces aA to the linear growth rate ao and both aA2 and aA3 to
zero. The second-order constant aB2 describes the effect of the secondary mode
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on the primary wave. Associated with this constant is the velocity function VB2.

The constant aB2 incorporates the O(B 2) effects on the amplitude A, while the
function represents the effect on the total two-dimensional velocity field. This
O(B 2) interaction is of key importance since it captures the distinct qualitative
changes in the two-dimensional velocity field caused by the three-dimensional
disturbance. Analysis of the energy balance for plane Poiseuille flow (Croswell
1985 ; Herbert 1986) has established a significant feedback from the three-
dimensional field into the two-dimensional field. This result suggests that either
a8 2 > 0 or, otherwise, B 2 VB2 must be of the order of the primary wave. At third
order, the constant aAB2 contains the combined effects of the velocity fields VA

and VB2.

The third-order expansion (4.10), (5.10) yields four Landau constants
governing the evolution of the secondary amplitude, B. The constant bB is the
linear growth rate of the secondary wave owing to the parametric excitation by a
TS wave of amplitude A*. In the calculation of the first-order constant bB, the
primary wave amplitude is considered to be A*. Actually, however, the amplitude
is A = A* + A. The second-order constant bAB accounts for the interaction com-
ponent of the primary wave, A. This constant merely gives the quantitative
change in the linear secondary growth rate and offers nothing qualitatively new.
The third-order constant b,3 accounts for the self-interaction of the secondary
wave. In particular, bB3 describes how the two-dimensional velocity field that is
produced by the secondary wave affects the growth of the three-dimensional
wave. The final constant to be considered is the third-order constant bA2B. This
constant is generated by the interaction of the secondary wave with the mean-
flow distortion and harmonic of the primary wave. Similar to the second-order
constant bAB, bA2B contributes quantitatively but presents nothing qualitatively
new. Detailed results for the Landau constants are given by Crouch (1988).
Here, we focus the attention on the physical results in the form of amplitude-
growth curves and disturbance-velocity profiles.

6.2 Subharmonic Amplitude-Growth Curves
Allowing the resonant interaction to influence the total TS wave through the

continuous amalgamation and splitting of A* and A causes dramatic variations in
the wave amplitude. A strong interaction occurs in the amplitude evolution of the
subharmonic mode when A and B are approximately of the same magnitude.
This interaction initially results in a rapid decay of A, with A reaching a low level
over a small Reynolds number range of 30-40 units. The reason for this decay
is the large negative value of the Landau constant aB2. Before the amplitude A
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tends to zero, however, the sign of aB changes. As a result of this sign change,
the decay is halted and the amplitude assumes a quasi-equilibrium value.

The key to understanding the progression of the physical amplitudes lies in
the interrelationship of the various amplitude components. Figure 2 shows how
these components evolve with the Reynolds number for a second-order interac-
tion at F = 124, b = 0.33. When B = A, the secondary amplitude B forces
through resonance the primary amplitude A = A* + A to an equilibrium value.
Simultaneous with the decay of A the secondary growth rate bB is reduced.
This reduced growth causes a c!iange in the slope of B versus R. Once A set-
tles to the slowly varying equilibrium value, the slope of the curve B versus R
!)ecomes almost constant. The composite amplitude U2o'ma x is initially
equivalent to A = A* + A. As B exceeds A and continues to grow, the com-
ponent B2UB2 becomes increasin,,ly dominant. The net effect of the
primary/secondary interaction on U20"max is thus an initial reduction owing to the
decay of A and a subsequent rapid 'lift-off' from the close-to-linear behavior
owing to the presence and growth of the B 2 function. The development of
US"max follows closely that of B. Note that B does not represent the maximum in
the uB profile, but rather the magnitude of uB at fixed yo.

Figure 3 shows the comparison of the first-, second-, and third-order ampli-
tude evolutions for the conditions F = 124 and b = 0.33. The principal effect of
the nonlinear interaction is to cause U2'ma to 'dip' and then 'lift-off', and to
reduce the growth of US'max. For these amplitudes, third-order effects are quali-
tatively insignificant.

In the formulation of the method, the primary amplitude A is arbitrarily split
into A* and A to capture the nonlinear primary/secondary interaction through the
pseudo-marching scheme. The relative size of the components is defined by the
parameter e = AIA. Ideally, the results should be independent of e or should
converge to a fixed solution as e -- 0. Figure 4 shows the development of
U2'max and Us'max for different values of e. The changes are indeed small and
decrease in size as e becomes smaller.

With the general interaction characteristics assessed, we are now ready to
compare these characteristics with the sparse data base of experimental results.
The first case considered is for the conditions F = 137 and b = 0.40 and the
experimental data of Kachanov & Levchenko (1984). Unfortunately, the span-
wise wave number b was not recorded for their results at F = 137. As an esti-
mate, we use the values recorded at the frequencies F = 109 and F = 124 to
extrapolate a possible value at F = 137. The principal effect of using a different
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wave number is the change in the linear secondary growth rate bB . To isolate
the interaction region for comparison, the experimental points are shifted in R.
This fixed shift is introduced to reduce deviations owing to unknown and
unpredictable effects such as nonparallelism, pressure gradients, and the virtual
leading edge. Based on the match-up of theory and experiment for an isolated
TS wave, the shift is chosen as 8R = -10. The results in figure 5(a) show the
comparison for a TS wave with small initial amplitude.

Increasing the initial TS amplitude results in the development of a secondary
wave as shown in figure 5(b). The amplitude of the secondary wave never
becomes large enough to allow a strong primary/secondary interaction. There-
fore, both waves harmlessly decay in both theory and experiment. A yet larger
initial TS amplitude produces significant growth of the secondary wave as seen
in figure 5(c). For these conditions a strong interaction occurs as conferred by
both second-order theory and experiment. The quantitative agreement is reason-
ably good although the theory shows a stronger 'lift-off of the two-dimensional
wave. The last comparison for this case is given in figure 5(d) where a high ini-
tial TS amplitude produces strong secondary growth and nonlinear interaction.
The experimental data for the two-dimensional wave amplitude show a larger
'dip' before the 'lift-off'. The deviations for the subharmonic wave amplitude may
be the result of a mismatch in the spanwise wave number which would produce
a different linear growth rate.

The second comparison is for the case F = 82.7 and b = 0.129, the condi-
tions of Corke & Mangano (1987). Figure 6 shows theoretical curves and experi-
mental data points. The initial amplitudes were chosen to provide good agree-
ment in the linear region before onset of the interaction. During these calcula-
tions, a singularity occurred owing to the similarity in shape of vB and VAB, and
the AB constant and function are not included in this solution. There is no loss
of information however, since the similarity implies that the total secondary wave
is characterized by VB . The agreement for the two-dimensional wave is fair and
the experimental data do not clearly show the 'dip' or 'lift-off' as predicted by the
theory. The agreement for the subharmonic wave amplitude is good until break-
down occurs in the experiments. The nonlinear reduction in the growth rate of
US'max is consistent between theoretical and experimental data.

In addition to the experimental cases, we have evaluated the results for con-
ditions similar to the numerical simulations of Spalart & Yang (1987). Their simu-
lations involved a two-dimensional wave and the simultaneous growth of subhar-
monic and fundamental modes. The qualitative agreement is good but the
theory predicts the two-dimensional 'lift-off' at an earlier point in the evolutions.
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This difference may be caused by the different mean-flows in theory and compu-

tation or may result from considering only single modes in the perturbation
analysis. The presence of a full spectrum allows for a broader transfer of energy
that tends to weaken the growth of individual modes. The low-amplitude simula-
tion run of Spalart & Yang (1987, figure 7) supports our finding of a possible
quasi-equilibrium evolution without any rapid growth toward breakdown.

6.3 Subharmonic Velocity Functions
In conjunction with the amplitude curves, the velocity functions provide a

detailed picture of the disturbance field produced by the wave interactions. In
the early stages of strong interaction, the major changes in the composite velo-
city field result from amplitude changes. Since the amplitudes play the role of
'weighting parameters', a rapid change in amplitude produces a restructuring of
the velocity field. As the strong interaction progresses, however, not only the
amplitudes but also the velocity functions are affected, primarily via A*.

Using the independent velocity functions and the amplitude-growth curves,
we construct the total composite functions for comparison with measured data.
Figure 7 shows a sequence of functions u2 D for the total two-dimensional velo-
city field. Initially, at R = 630, the velocity distribution closely resembles the TS-
wave profile. As the strong interaction takes place (see figure 2), the function is
transformed into the characteristic 'bell shape' observed by Kachanov et al.
(1977). The qualitative features of the U2 0 functions are consistent with the
experimental data given in figure 8. The net effect is a shift of the largest ampli-
tude fluctuations from y = 0.6 to y = 1.5 and the dramatic growth of the max-
imum, while the peak associated with the deformed TS wave looses significance.
Over this same region of interaction, R = 630-680, the shape of the subhar-
monic velocity function Us remains virtually unchanged, as substantiated by
figure 9.

6.4 Fundamental Amplitude Growth Curves
Like the subharmonic mode, the fundamental modes experience a strong

primary/secondary interaction when the values of A and B are sufficiently large
and of the same order. However, the behavior of the primary wave is
significantly different and depends on the values of the wave amplitudes when
the interaction occurs. If the interaction occurs at small amplitudes, the Landau
constant a32 is negative and thus reduces the primary growth. The constant aB2
remains negative as A* decreases. If aA is small or negative as it is past R1,

the primary wave amplitude tends rapidly to zero, more rapidly than in absence
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of the fundamental wave. Consequently, B levels off and ultimately decreases
owing to the lack of parametric forcing. The decay of the primary wave can only
be prevented by a large positive growth rate aA. These results suggest that for
relatively small TS amplitudes fundamental type (K-type) breakdown must be ini-
tiated upstream of R,1. TS waves of lower frequencies are associated with larger
growth rates aA and hence are more susceptible to K-type breakdown. Accord-
ing to our analysis, it is not coincidental that the subharmonic route to transition
was discovered at high frequencies with feeble growth rates. At much larger
amplitudes, third-order effects become significant and halt the decay of the pri-
mary mode. Therefore, if the primary amplitude is large, fundamental breakdown
can occur past R11.

Figure 10 shows the third-order evolution of the different amplitude com-
ponents for the conditions F = 64.4, b = 0.44 (Cornelius 1985). The amplitude
A is driven to an equilibrium value by the strong interaction beginning at
R = 765. The reduction in A results in a decrease in the secondary growth rate
bB. The two-dimensional physical amplitude U2D'max experiences a 'lift-off' from
A owing to the component B2UB 2. The large corresponding function UB2 explains
why U2D'max is larger than A + B2. The three-dimensional amplitude UF'max ini-
tially coincides with B. This agreement is mandatory since B is a measure of uB
at Yo, which initially is the position of the maximum of UF'. During the interaction,
UF'max separates from B as a result of the increasing component B3 UB3 The
principal effects of the nonlinear interaction are to change the linear growth rate
of B and to produce a saturation of B caused by terms of order B3.

Peak- and valley-amplitude curves for the conditions of figure 10 are given
in figure 11. This figure also shows the comparison of first- and third-order
results. The third-order curves level off owing to the saturation of B. Contribu-
tions from higher spanwise wave numbers prevent the peak and valley curves
from being as close together as the curves for the first-order case. Finally, figure
12 gives a comparison with the experimental results of Cornelius (1985). The
agreement is good for both peak and valley up to R = 776. At this Reynolds
number, the occurrence of high-frequency spikes was observed for the conditions
F = 64.4, b = 0.21. The lack of agreement in and beyond the single-spike stage
is caused by physical processes not accounted for in our theoretical model.
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6.5 Fundamental Velocity Functions
The composite functions for the fundamental mode are presented as Up and

UV, the rms velocity fluctuations at the peak and valley position, respectively.
Figure 13 shows a sequence of peak profiles at different R locations. Initially the
shape is similar to a TS-wave profile. Moving downstream, the maximum shifts
outward and the profile develops a narrow maximum. Figure 14 shows the
sequence of the corresponding profiles in the valley. The first distribution at
R = 700 is a mildly distorted TS-wave profile. This profile changes over to a
broader distribution on which new maxima arise.

Finally, we compare the composite functions Up and uV with the experimen-
tal data of Cornelius (1985). The calculated functions correspond to the ampli-
tudes given in figure 12. Figure 15 compares the three velocity profiles at the
peak for the Reynolds numbers R = 716, 735, and 755. The agreement is good
for R = 716 and R = 735. At R = 755 the experiment shows larger values on
the outer portion of the profile which may be related to the occurrence of spikes.
The profiles at the valley for the same R locations are given in figure 16. These
profiles show good agreement between theory and experiment. Overall, the
experimental data offer strong support for our theoretical treatment of this prob-
lem.

7. Conclusions

7.1 Appraisal of the Approach
The principal aim of this work is to provide some understanding and expla-

nation of the primary/secondary mode interaction in boundary layers. The con-
vincing agreement between theory, experiment, and computer simulation has
established the parametric origin of the secondary instability. Under the condi-
tions prevailing in the experiments, the assumptions of the parametric approach
are well justified (Herbert 1984a). However, when the amplitude of the secon-
dary mode grows to a significant level, a mutual interaction must be permitted.
Modeling this process as a pure mutual interaction of multiple primary waves was
not yet successful in maintaining the crucial parametric resonance. The alterna-
tive approach developed here provides the secondary mode through parametric
resonance yet permits the mutual interaction of this mode with the primary wave.

The pseudo-marching scheme in conjunction with the perturbation method
provides a continuous transition from the purely parametric to the increasingly
mutual interaction. Judging the agreement with experimental data and results of
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computer simulations, the method appears to capture the physics of the problem.
Surprisingly, the comparison with experimental data shows good agreement up
to breakdown stage where the amplitudes are in excess of 6% for the subhar-
monic (Corke & Mangano 1987) and 10% for the fundamental (Cornelius 1985)
type of transition. The assumptions of the theory, though expressed in the weak
terms of perturbation analysis like "sufficiently large" appear to be justified and
not overly restrictive. Our results also suggest that the essence of the transition
process up to the breakdown stage is contained in the interaction of relatively
few Fourier modes. This conclusion is supported by the numerical simulations of

transition in plane Poiseuille flow by Gilbert & Kleiser (1987) and Zores (1989).

Perhaps the greatest value of this approach comes from the ability to
decompose the flow field into components of well-defined order. This decompo-
sition provides new insights unobtainable from experiments and transition simula-
tions. These qualitative insights and the quantitative analytical capabilities of the
method developed here provide for the first time the physical basis for a transi-
tion criterion.

7.2 Conditions for Breakdown
The results of this study provide new scenarios for the early stages of 'rib-

bon induced' transition. The theoretical results suggest a set of parameters that
could be monitored to detect the onset of sustained growth and ultimate break-
down.

Under idealized conditions, the transition process begins with the onset of
the two-dimensional wave. This wave then evolves within a virtually two-
dimensional framework. Given the frequency and an initial amplitude, the wave
development can be described by weakly nonlinear methods. For sufficiently
large amplitudes, the two-dimensional wave parametrically excites a three-
dimensional secondary wave. This phenomenon is characterized by the first
occurrence of a positive growth rate bB at some initial conditions (R1 A 1). From

this point on, the two- and three-dimensional wave undergo simultaneous evolu-
tion, initially without any significant effect of the secondary on the primary wave.
If the two-dimensional wave decays in this initial phase, the secondary mode
grows with diminishing rate and ultimately decays. However, once the secondary
wave amplitude reaches a substantial level, a resonant interaction between the
primary and secondary waves occurs. In a quiet environment with low initial
amplitudes of primary and secondary modes, the interaction typically starts when
both amplitudes reach approximately 1%. For subharmonic modes, this interac-
tion is always favorable to sustained growth and therefore leads to breakdown.
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For fundamental modes at low amplitudes, the nonlinear interaction reduces the
growth and ultimately causes a rapid decay of the primary wave. Therefore, a
significant primary growth rate is necessary to initiate K-breakdown. For large
amplitudes, the primary/secondary interaction is always favorable to sustained
growth.

The feedback loop suggested by the energy analysis of Croswell (1985)
exists but is not as strong as previously anticipated. Once the conditions for
self-sustained growth are established, the primary amplitude remains virtually
constant and provides a diminished parametric forcing for the continued growth
of the secondary wave. The observed and theoretically predicted energy
increase in the two-dimensional field is caused by a rapidly increasing com-
ponent of order B2. This component is generated by nonlinear self-interaction of
the secondary wave and does not support the catalytic action of the two-
dimensional field. However, the strong self-sustained growth of both two- and
three-dimensional disturbances on a convective time scale is the precursor of
immediate breakdown. The tertiary instabilities associated with this process are
outside the scope of the present theory.
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I
3 Figure Captions

Figure 1. Schematic of energy transfer between the mean flow and the two-

Iand three-dimensional waves. The dashed line signifies the 'cata-

lytic' parametric excitation (Herbert 1988a).

I Figure 2. Evolution of the different amplitude components A*, A, B, U2D'ma x,

and Us'ma. Second-order results for the subharmonic mode at
F= 124, b= 0.33, and e= 0.1. Initial values are A= 7.82-10- 3 and

B= 5.3-10- 5 at R= 510.

Figure 3. Comparison of the first-, second-, and third-order evolutions of
U2D'max and uS'max. Results for the subharmonic mode at F= 124,

b= 0.33, and E= 0.005. Initial values are A= 5"10- 3 and B= 10- 4 at
R= 510.

Figure 4. Effect of the value of 6 on the amplitude evolution of U2'max and

Us'max for a second-order interaction. Results for the subharmonic
mode at F= 124, b= 0.33, and e= 0.05, 0.1, 0.15. Initial values are3 A= 7.82-10-- and B= 5.310-5 at R= 510.

Figure 5. Comparison of the evolution of U2D'max and us'max with the experi-

ments of Kachanov & Levchenko (1984, figure 2). Second-order
results for the subharmonic mode at F= 137, b= 0.40, and e=- 0.05.

I (a) The TS wave with initial values A= 5.2-10 -4 at R= 500 in the
absence of the secondary mode. Initial values at R= 510 are (b)
A= 0.4.10-2 and B= 2.5-10- 5 , (c) A= 1.03-10-2 and B= 0.65-10-s,

I (d) A= 1.5-10-2 and B= 1.9-10- 5. Experimental data are shifted by
R= -10.

Figure 6. Comparison of the evolution of U2O'max and us'max with the experi-
ments of Corke & Mangano (1987, figure 65). Second-order results

3 for the subharmonic mode at F= 82.7, b= 0.129, and c= 0.05. Ini-
tial values are A= 4.5.10 - 3 and B= 1.1-10 - 3 at R= 750.

3 Figure 7. Evolution of the total two-dimensional velocity function U2D over
R= 630 - 680. Second-order results for the subharmonic mode at
F= 124, b= 0.33, and e= 0.05, with initial values A= 7.82.10 - 3 and

B= 5.3-10 - 5 at R= 510.
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Figure 8. Evolution of the total two-dimensional velocity function U 2 0 in the
experiments of Kachanov et al. (1977). Results for the subhar-
monic mode at F= 88.

Figure 9. Evolution of the total subharmonic velocity function Us over
R= 630 - 680. Second-order results for the subharmonic mode at
F= 124, b= 0.33, and e= 0.05, with initial values A= 7.82-10- 3 and
B= 5.3-10-s at R= 510.

Figure 10. Evolution of the different amplitude components, A, A, B, U2D'max,

and UF'max. Third-order results for the fundamental mode at
F= 64.4, b= 0.44, and E= 0.01. Initial values are A= 1.6-10-2 and
B= 7-10- 4 at R= 675.

Figure 11. Evolution of Up'max and UV'max for first- and third-order results at
F= 64.4, b= 0.44, and E= 0.01. Initial values are A= 1.6-10-2 and
B= 7-10 - 4 at R= 675.

Figure 12. Comparison of the evolution of Up'm and Uv'max with the experi-
ments of Cornelius (1985, figures 16, 17). Third-order results for
the fundamental mode at F= 64.4, b= 0.44, and e=- 0.01. Initial
values are A= 1.6.10-2 and B= 7-10- 4 at R= 675.

Figure 13. Evolution of the total velocity profile Up at the peak position for
R= 730 - 780. Third-order results for the fundamental mode at
F= 64.4, b= 0.44, and c= 0.01, with initial values A= 1.6-10-2 and
B= 7-10-4 at R= 675.

Figure 14. Evolution of the total velocity profile UV at the valley position for
R= 730 - 780. Third-order results for the fundamental mode at
F= 64.4, b= 0.44, and e= 0.01, with initial values A= 1.6-10-2 and
B= 7.10-4 at R= 675.

Figure 15. Comparison of the total velocity profile Up at the peak position with
the experiments of Cornelius (1985, figure 16). Normalized function
at (a) R= 716; (b) R= 735; (c) R= 755. Third-order results for the
fundamental mode at F= 64.4, b= 0.44, and c= 0.01, with initial
values A= 1.6.10-2 and B= 7.10 - 4 at R= 675.

Figure 16. Comparison of the total velocity profile, uV at the valley position
with the experiments of Cornelius (1985, figure 17). Normalized
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function at (a) R= 716; (b) R= 735; (c) R= 755. Third-order results
for the fundamental mode at F= 64.4, b= 0.44, and - 0.01, with
initi. values A= 1.6.10 - 2 and B= 7-10 - 4 at R= 675.
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Figure 1. Schematic of energy transfer between the mean flow and the two-
and three-dimensional waves. The dashed line signifies the 'cata-
lytic' parametric excitation (Herbert 1988a).
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IFigure 2. Evolution of the different amplitude components A*, A, B, U2D'ma,

and us'max. Second-order results for the subharmonic mode at

F= 124, b= 0.33, and e8=0.1. Initial values are A= 7.82-1O-3and

B= 5.3105 at R= 510.
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Figure 3. Comparison of the first-, second-, and third-order evolutions of
U2D'max and us'max. Results for the subharmonio mode at F= 124,

R= 510.
b= 0.33, and F-= 0.005. Initial values are A= 5-10-3 and B- 10-4 at

0-2.
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Figure 4. Effect of the value of 8 on the amplitude evolution of U2D'max and

Us'max for a second-order interaction. Results for the subharmonic

mode at F= 124, b= 0.33, and e= 0.05, 0.1, 0.15. Initial values are

A= 7.82-10 - 3 and B= 5.3-10 - 5 at R= 510.
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Figure 5. Comparison of the evolution Of U20'max and us'max with the experi-
ments of Kachanov & Levchenko (1984, figure 2). Second-order
results for the subharmonic mode at F= 137, b= 0.40, and c= 0.05.
(a) The TS wave with initial values A= 5.210-4 at R= 500 in the
absence of the secondary mode. Initial values at R= 510 are (b)
A= 0.4.10-2 and B= 2.5-10-5, (c) A= 1.03.10-2 and B= 0.65-10-5,
(d) A= 1.5.10-2 and B= 1.9-10-5. Experimental data are shifted by
R= -10.
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Figure 6. Comparison of the evolution Of U20'max and us'max with the experi-

ments of Corke & Mangano (1987, figure 65). Second-order results
for the subharmonic mode at F= 82.7, b= 0.129, and F-= 0.05. Ini-
tial values are A= 4.5-10-3 and B= 1.1-10-3 at R= 750.
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Figure 7. Evolution of the total two-dimensional velocity function U2 0 over
R= 630 - 680. Second-order results for the subharmonic mode at
F- 124, b= 0.33, and e= 0.05, with initial values A= 7.82.10- and
B= 5.3.10 - 5 at R= 510.
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Figure 8. Evolution of the total two-dimensional velocity function u20 in the
experiments of Kachanov et al. (1977). Results for the subhar-
monic mode at F= 88.
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Figure 9. Evolution of the total subharmonic velocity function us over
R= 630 - 680. Second-order results for the subharmonic mode at
F= 124, b= 0.33, and F= 0.05, with initial values A= 7.82-10 - 3 and
B= 5.3.10 - 5 at R= 510.
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Figure 10. Evolution of the different amplitude components, A*, A, B, U2D'max,

and UF'max. Third-order results for the fundamental mode at

F= 64.4, b= 0.44, and F= 0.01. Initial values are A= 1.6.10-2 and

B= 7-10 - 4 at R= 675.
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Figure 11. Evolution of UP'max and UV'max for first- and third-order results at

F= 64.4, b= 0.44, and E= 0.01. Initial values are A= 1.6.10 - 2 and

B= 7.10 4 at R= 675.
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Figure 12. Comparison of the evolution of UP'max and Uv'max with the experi-
ments of Cornelius (1985, figures 16, 17). Third-order results for
the fundamental mode at F= 64.4, b= 0.44, and F= 0.01. Initial
values are A= 1.6-10-2 and B= 7.10 -4 at R= 675.

-i=

100

100

1-3 10 I

650 700 750 R 800 850 900

- 48 -



Figure 13. Evolution of the total velocity profile Up at the peak position for
R= 730 - 780. Third-order results for the fundamental mode at
F= 64.4, b= 0.44, and E= 0.01, with initial values A= 1.6,10 - 2 and
B= 7-10 - 4 at R= 675.
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Figure 14. Evolution of the total velocity profile Uv at the valley position for

R= 730 - 780. Third-order results for the fundamental mode at

F= 64.4, b= 0.44, and e= 0.01, with initial values A= 1.6-10 - 2 and

B= 7-10 -4 at R= 675.
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Figure 15. Comparison of the total velocity profile Up at the peak position with

the experiments of Cornelius (1985, figure 16). Normalized function

at (a) R= 716; (b) R= 735; (c) R= 755. Third-order results for the

fundamental mode at F= 64.4, b= 0.44, and e= 0.01, with initial

values A= 1.6-10-2 and B= 7-10 -4 at R= 675.
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Figure 15 (b)
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Figure 15 (c)
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Figure 16. Comparison of the total velocity profile, Uv at the valley position

with the experiments of Cornelius (1985, figure 17). Normalized

function at (a) R= 716; (b) R= 735; (c) R= 755. Third-order results

for the fundamental mode at F= 64.4, b= 0.44, and E= 0.01, with

initial values A= 1.6.10-2 and B= 7.10 - 4 at R= 675.
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Figure 16 (b)
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Figure 16 (c)
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Abstract

Two new techniques for the study of the linear and nonlinear in-
stability in growing boundary layers are presented. The first tech-
nique employs partial differential equations of parabolic type exploit-
ing the slow change of the mean flow, disturbance velocity profiles,
wavelengths, and growth rates in the streamwise direction. The sec-
ond technique solves the Navier-Stokes equation for spatially evolving
disturbances using buffer zones adjacent to the inflow and outflow
boundaries. Results of both techniques are in excellent agreement.
The linear arI noulinear development of small amplitude Tollmien-
Schlichting waves in the Blasius boundary layer is investigated with
both techniques and with a local procedure based on a system of
ordinary differential equations. The results are compared with previ-
ous work and the effects of nonpaxallelism and nonlinearity axe clari-
fled. The effect of nonparallelism is confirmed to be weak and conse-
quently, not responsible for the discrepancies between measurements
and theoretical results for parallel flow. Experimental uncertainties,
the adopted definition of the growth rate, and the transient initial
evolution of the TS wave in vibrating-ribbon experiments likely cause
the discrepancies. The effect of nonlinearity is consistent with previ-
ous weakly nonlinear theories. While nonlinear effects are small near
branch I of the neutral curve, they are significant near bra-ich II and
delay or even prevent the decay of the wave.



1 Introduction

The breakthrough in the analysis of the viscous instability of shear flows was
achieved by Tollmien (1929) and Schlichting (1933) for the Blasius bound-
ary layer which, owing to its streamwise growth, does not satisfy the basic
assumption of a parallel flow in the Orr-Sommerfeld theory. The results
of Tollmien and Schlichting were experimentally confirmed by Schubauer
& Skramstad (1947). This confirmation is remarkable since Schubauer &
Skramstad recorded spatial growth rates and converted these by use of the
phase velocity to the temporal growth rates calculated by Schlichting (1933).
Moreover, the disturbances were certainly of finite, observable amplitude.
Gaster (1965) suggested the direct solution of the Orr-Sommerfeld equation
for spatial growth rates and clarified the relation between spatial and tem-
poral growth rates. Although access to powerful computers has eased, the
less demanding temporal approach and the a posteriori conversion to spatial
growth is still preferred.

The increasing accuracy in solving the Orr-Sommerfeld equation made
clear that a discrepancy remained between theoretical and experimental re-
sults on the neutral curve for two-dimensional TS waves. Since these discrep-
ancies are strongest at high frequency and low Reynolds number, the neglect
of the boundary-layer growth was considered the most likely cause. Numer-
ous efforts have been made to avoid the approximations - parallel mean flow
and linearization - in the stability analysis of boundary layers. The most di-
rect attempt to obtain stability results for two-dimensional disturbances has
been made by Fasel (1976) by directly solving the Navier-Stokes equations
numerically. The key to this success was the formulation of non-reflective
artificial outflow-boundary conditions, a problem that is still unsolved for
more general disturbances. In a similar approach, Bayliss et al. (1985) ob-
tained results for the streamwise evolution of linear and nonlinear TS waves.
These numerical studies, however, did not resolve the discrepancies between
experiment and theory.

Other efforts aimed at avoiding only one of the crucial approximations.
Itoh (1974) and Herbert (1974) applied perturbation methods to incorporate
the effect of nonlinearity on the growth of two-dimensional waves and par-
tially overcame the problem in representing the mean-flow distortion within
the parallel-flow approximation. Within a strictly parallel framework, no
mean-flow solution to the Navier-Stokes or boundary-layer equations exists



in a semi-infinite domain.
The effect of nonparallelism in the Blasius boundary layer has been stud-

ied with the method of multiple scales by Bouthier (1972), Saric & Nayfeh
(1977), Van Stijn & Van de Vooren (1983), and Bridges & Morris (1984), with

I an iterative method by Gaster (1974), and with an asymptotic expansion in
the frequency by Itoh (1986). Bouthier concluded that, in contrast to the
parallel case, the growth rate of disturbances in nonparallel flows depends
on the distance from the plate and on the flow quantity considered and thus
requires careful definition. Although this conclusion was confirmed in the
subsequent studies, their results are different and puzzling. In terms of the
preferred experimental measure u' ., the maximum streamnwise rms fluctua-
tion, Gaster found a neutral curve close to the parallel-flow result. While his
findings were confirmed by Van Stijn & Van de Vooren and Bridges & Mor-
ris, Saric & Nayfeh presented a different neutral curve in better agreement
with the experimental data. Moreover, their results were confirmed with new3 measurements by Kachanov & Levchenko (1977), leaving the truth hard to
find.

Clarification of the nonparallel effect and of the combined effects of non-
I parallelism and nonlinearity would be highly desirable. The attempt to in-

corporate nonlinear effects in the multiple-scales approach fails, however,
since the crucial solvability condition determines only one correction, either
for nonparallelism or nonlinearity. This failure is likely caused by account-
ing for small terms of the same order at different levels of approximation,
a procedure that is not rational in the sense of Van Dyke (1975). More
recently, asymptotic theories valid in the limit of infinite Reynolds number
have incorporated the effects of nonparallelism (Smith 1979a, 1979b) and
nonparallelism and nonlinearity simultaneously (Goldstein & Durbin 1986).
Smith finds the lower branch of the neutral curve similar to Saric & Nayfeh
(1977) and that accounting for nonparallelism improves the agreement with3 the experimental data. However, the accuracy of the asymptotic results at
the relatively low Reynolds numbers of concern is not verified.

Here, we apply three different methods for analyzing the stability of
It boundary layers based on ordinary, parabolic partial, and elliptic partial

differential equations. The latter two methods account for both nonpar-
allel and nonlinear effects. The method based on differential equations of
parabolic type exploits the facts that the mean flow is governed by the
boundary-layer approximation and, moreover, the second derivatives of the

I

I
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disturbance growth rate, wavelength, and velocity profile with respect to
the strearnwise direction are sufficiently small to be neglected. While these
facts have been used in previous multiple-scale analyses and the parabolic
nature of the resulting intermediate equations has been mentioned by Gaster
(1965), their potential for solving the stability problem has not been rec-
ognized. These parabolic equations, which we denote as parabolized sta-
bility equations (PSE), describe the evolution of linear or nonlinear two- or
three-dimensional disturbances in boundary-layer flows with combined slowly
changing streamwise properties such as nonparallelism, real-gas effects, or
dissociation, although we restrict the formulation here to the Blasius bound-
ary layer. The PSE can be applied as well in parallel flows to study the
temporal or spatial nonlinear evolution of initial data. The initial-boundary-
value problem associated with the parabolic equations can be solved with a
marching procedure. Initial conditions can be arbitrarily chosen or can be
obtained from a local procedure. This procedure solves a homogeneous lin-
ear system of ordinary differential equations for local eigensolutions similar
to previous studies. These eigensolutions agree with the solution of the lin-
earized PSE within negligible terms. Given arbitrary initial conditions, the
PSE solution will exhibit a transient behavior.

The use of parabolic differential equations in the analysis of problems of
basically elliptic nature with small feedback is successful in some other ar-
eas, e.g. the analysis of acoustic wave propagation (McAninch 1986). In
the field of weakly nonparallel flow stability, Hall (1983) suggested solv-
ing parabolic equations for steady G~rtler vortices describing the evolution
within terms of order O(R;'1 ), where R, is the Reynolds number based on
the streamwise variable. In essence, this approach considers Grtler vortices
a three-dimensional solution of the boundary-layer equations. For steady,
spanwise periodic disturbances, Hall's equations are a special case of the
PSE formulated in curvilinear coordinates. Itoh (1986) derived a parabolic
equation for small-amplitude TS waves identical with the linearized PSE for
two-dimensional disturbances. Itoh observed that his equation contains both
the unsteady boundary-layer equation and the Orr-Sommerfeld equation as
limits, hence its solutions can directly describe the matching of solutions
shown with asymptotic methods by Goldstein (1983). Since separation of
variables is inapplicable, Itoh choose an asymptotic expansion in frequency
to reduce the problem to a sequence of ordinary differential equations.

An alternative approach for studying the spatial evolution of disturbances



in boundary layers including nonlinear and nonparallel effects is the direct
numerical solution of the Navier-Stokes equations (DNS). Special attention
must be paid to the non-physical outflow-boundary conditions to avoid the
upstream reflection of energy of outflowing disturbances. Here we present a
spectral method for solving the Navier-Stokes equations that avoids reflec-
tions by fringe regions adjacent to the inflow and outflow boundaries, yet
maintains the benefits of using Fourier series in the streamwise and spanwise
direction. The DNS approach takes no advantage of the essentially parabolic
character of the disturbance evolution except in the fringe regions. Provided
the fringe regions and strearnwise periodic boundary conditions do not bias
the solution, the DNS yield the benchmark for other approaches involving
the one or other approximation.

Both PSE and DNS approach have trade-offs. The DNS solution remains
accurate through transition into turbulent flow if the resolution is sufficient.
The disadvantage is the enormous demand in computer time and memory.
The validity of the PSE may restrict their use in the late stages of transition
that are characterized by tertiary instabilities and the occurrence of spikes.
In the earlier stages, however, solving the PSE is very efficient, more efficient
than solving the traditional eigenvalue problems, and therefore the PSE are
an attractive tool for studies on nonlinear wave interactions as well as for
practical applications.

This paper consists of three major parts. Chapter 2 describes the
parabolic stability equations and the associated eigenvalue problem for lo-
cal solutions. Chapter 3 discusses the approch to solving the Navier-Stokes
equations. Results of the various methods are presented in Chapter 4 for
a comparison between each other and with previous work. Although the
development of the PSE approach by Herbert & Bertolotti and of the DNS
approach by Spalart occurred independently, we consider the side by side
presentation of the two approaches and their results beneficial to both the
verification of the new tools and the establishment of an accurate set of
benchmark data for the nonparallel and nonlinear stability of the Blasius
boundary layer.



2 The Parabolic Stability Equations

Without loss of generality, we consider two-dimensional disturbances in the
Blasius boundary layer. The extension to three-dimensional disturbances
and nonsimilar boundary-layer flows is straightforward. We use Cartesian
coordinates z, y, where x is the streamwise direction and y is normal to
the plate. The Navier-Stokes equations are written in terms of the stream
function IF to satisfy continuity identically,

( 2  IV2+ 8  a 8)a 2 :at - 2 Vax +z ay)V2 =0

All quantities are nondimensionalized using the velocity Uo and the fixed

length 6o = 11
1 io7U~O, where io is a fixed dimensional distance from the

leading edge and v the kinematic viscosity. Ro = Uoo6o/v is the Reynolds
number based on 6o and R1 = (U.,,o/V)1/ 2. We further note the relation
Xo = 1o/5o = R.

We decompose the streamfunction into the basic flow, lko(x, y), and the
disturbance, O(x,y,t). Within the boundary layer approximation, the basic
flow is given by To = f(r1)(x/o) + O(Ro-2) where f satisfies the Blasius
equation,

fill+ f /it = 0 (2)

f = = 0 at v - 0, f' -- 1 as rq - oo

with 17 = g/6(:) and § is the dimensional coordinate normal to the plate.
The nonlinear equation governing the disturbance ip is obtained by introduc-
ing the combined flow into the Navier-Stokes equation and subtracting the
equation satisfied by the basic flow:

(I _1V 2 + a " a 2 (3)at 7& ay ax a 5Y)
+9 a3%0 atk'&a 0 = aO - a va + O(R0

2)
ay aXay2 a y3 (X ay ya) x

where the errors of order O(R 2) are introduced by the boundary-layer ap-
proximation to the mean flow.



Owing to its elliptic nature, this equation supports solutions in the form
of waves. Applying the boundary-layer approximation directly to this equa-
tion and thereby changing the character from elliptic to parabolic would be
incorrect since the relatively short wavelength of instability waves causes
streamwise changes too large to be neglected (Herbert & Morkovin 1980).
Parabolic equations for the slowly varying components of the solution can
be obtained, however, when accounting separately for the wavelike nature of
the disturbance.

A spatially evolving wave of constant frequency w (and spanwise wavenum-
ber f) is fully described by specifying the streamwise wave number a(x), the
strearnwise growth rate y(x), and the velocity profiles as derivatives of the
streamfunction O(x, y). The disturbance strearnfunction can be written in
the form

0(X,t) = 4o{,Y) exp [a(C)d - iwt] + c.c. (4)

where a(x) = -y(x) + ia(x). When considering solutions 0 of the linearized
version of equation (3), the dependence of a and 0 on x results from the
nonparallelism of the mean flow that renders equation (3) non-separable in
x and y. In general, the dependence on x can result from nonparallelism
or nonlinearity. The weak divergence of the mean flow with x suggested to
previous investigators a perturbation expansion in a slow streamwise variable.
Such expansions are used in the method of multiple scales as well as in
Gaster's iterative technique, and will be applied in our local procedure to
produce ordinary differential equations in y. The derivation of the PSE rests
on two assumptions shared with these expansion techniques:

(Al) The variation of -1, a, and 4 in x is sufficiently small to neglect sec-
ond derivatives O2 /ax 2 and products of first derivatives a/0 of these
quantities.

(A2) Within the order of approximation (Al), the disturbance is indepen-
dent on the downstream conditions yet exhibits elliptic characteristics
at higher order.

Assumption (A2) was first discussed by Gaster (1965) and he questioned
whether it would be meaningful to proceed with a rational multiple-scales
approach indefinitely to higher orders. Support for assumption (A2) can



be derived from an observation reported by Morkovin (19??): The evolu-
tion of disturbances up to the onset of secondary instability is a viscous
phenomenon. The maximum amplification occurs when a positive feedback
loop exists between the two viscosity-dominated regions, the viscous critical
layer and the Stokes layer at the wall. Morkovin observed that the ratio of
the Stokes-layer thickness to the distance of the critical layer from the wall
remains practically constant along the ridge of maximum TS wave amplifi-
cation in the range 1.22 •105 < R, < 8.44 • 108. Since the growth of the
boundary layer is the agent that tunes and detunes the feedback loop, it is
plausible to expect changes in the wavenumber and growth rate to occur on
the same scale as the divergence of the basic flow.

With assumption (Al), the derivatives of b with respect to x are linear
in O9/4ax and da/dx, and take the simple form

[an M o m da
-a + (-(i m'T I

-- -[aTma Tx 2 - dX (5)

Introducing this result in the disturbance equation (3) yields a partial dif-
ferential equation of parabolic type that is the first of two equations which
compose the PSE. The parabolic character is clearly exhibited when the
linearized equation for two-dimensional disturbances is written in operator
form,

(Lo + LI)Ob + L2L-z + dzL = 0 (6)

with boundary conditions

0(x,0) = O(x,0) = 0, (xy) = T (x,y) = 0 as y- oo (6a)

and initial conditions

O(xo, y) = f(y),a(xo) = ao (6b)

The operators Lo to L3 operate only in y and are

1 2 2249I 2 2)Lo = -R(D + a ) + ( 0a-i,,)(D + a 2L)(a
&3%po 2Po 2 y

= - D - -- (D +a2 )D (7b)
aX~oy2 9X
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L2 = - j(D +a + a-(D + 3a8 - 2i,., (7c)

R 053 (7c)

L3 = -- 2(D2+3a2)- iw+ 3a (7d)

with D = O/Oy. Lo is the Orr-Sommerfeld operator and L, accounts for the
transverse velocity component of the basic flow.

A second equation is required to resolve the ambiguity in the partition
of T in eq. (4). This ambiguity arises because both 4, and the exponen-
tial term depend on x, and thus, the growth and phase variation of the
disturbance may be represented either by the exponential term or by the
streamwise changing 4,. To complete the specification of the PSE we remove
the ambiguity commonly by specifying the normalization condition

-((,OY) =,x o> X0 (8)

where y" is some appropriate location. Equations (6) and (8) comprise the
linearized parabolic stability equations governing the evolution of the unknow
functions a and 4,. The nonlinear PSE will be discussed below. Alternative
normalizations, e.g. da/dx = 0, can be locally utilized whenever convenient,
provided 4 maintains property (Al).

The simplicity of deriving the PSE under the assumptions (Al) and (A2)
underlines their ability to capture a wide range of linear and nonlinear phe-
nomena. No hierarchical ordering of terms based on length scales or ampli-
tudes is required, eliminating the need for deeper insight prior to the analysis.
The nonlinear problem can be easily treated when the parabolic equation is
solved with a marching procedure. In special limits, the PSE represent the
equations used in previous studies ranging from receptivity to secondary in-
stabilities. At high Reynolds numbers, when the nonparallel effects are very
small, the linearized PSE approache the Orr-Sommerfeld equation. At low
Reynolds numbers and low frequencies, the wavenumber becomes small and
powers of a become negligible. In this limit, the linearized PSE (6) ap-
proaches the unforced unsteady boundary layer equation used in receptivity
analysis. Itoh (1986) used this fact to verify the matched asymptotic ex-
pansions of Goldstein (1983). Preliminary results indicate that using the
three-dimensional, nonlinear version of the PSE to analyze the evolution of
a finite amplitude TS wave and a small amplitude three-dimensional wave,



one captures both the weakly non-linear Craik mechanism and the paramet-
ric secondary instability mechanisms usually unvealed by Floquet analysis
(Herbert 1988).

2.1 Measures of Growth

In the parallel-flow approximation, all physical quantities grow or decay ac-
cording to the eigenvalue of the Orr-Sommerfeld equation in exactly the
same way. In a nonparallel mean flow, the growth and phase variation of
some physical quantity Q depends on a, 0, and possibly its derivatives in y.
The growth rate of Q is defined as the logarithmic derivative

1OQ1Wx = 1a

where the division by Q renders the growth independent of the magnitude
of Q. As observed by Bouthier, the dependence of 4 on y makes the growth
rate at each streamwise location ambiguous since different rates are obtained
at different distance from the wall. Furthermore, as discussed by Schubauer
& Skramstad (1947) and later by Gaster (1965) and Saric & Nayfeh (1977),
the growth rate is affected by the direction, say Y = Y(x), along which
the streamwise derivative of Q is taken. Van Stijn & Van de Vooren (1983)
further noted that if growth is based on the u component of the disturbance
velocity at the location y = y,, corresponding to the maximum u,,,., of u,
the growth rate is independent of the direction Y(z).

Measurements of u,, are a good indicator for the growth of disturbances.
The experimental measurements of the u component are more accurate than
those of the v component. Measured growth data based on u,,,, are inde-
pendent of the traversed path of the sensor and avoid the need to determine
the exact height of the location above the plate. In addition, the amplitude
based on urn8, is proportional to the strength of the vorticity at the critical
layer that plays a central role in the evolution of secondary instabilities. The
growth rate and wavenumber based on u,, are given by:

j(x) = -,(x) + Re[( O ¢ ( x  )Y". (lOa)
ay ayax

() ckx m[(O €(x 'Ym)Y-' 0k(x' Ym), (l0b)



Other quantities, such as the disturbance energy, can be monitored for
growth, and growth rates can be defined locally at some point y or inte-
grated across the boundary layer. With some exceptions, such as measuring
the growth of u at the point where u reverse the phase, growth rates and
wavenumbers based on different quantities agree within O(R. 1/2 ). However,
neutral stability curves can differ widely at the higher frequencies where the
growth rate is of this order.

Having presented a definition of growth, eq (10) we can expand the dis-
cussion on the normalization condition, eq (8). Let the function d(x), based
on , or other quantity, be known. Equation (8) imposes &0/8Ox 2 = 0 for
all x at y.. At other y locations the second derivative is small since the profile
does not distort rapidly in x. Hence, because the growth of 4 is restricted by
the normalization, it follows that Ia - al < 1. Conversely, the normalization
a = const. may be used in the neighborhood of a location, say xi, if the
constant is chosen close to a(x1 ), thus forcing 4/az2 < 1 at xj. For exam-
ple, the a obtained with the parallel flow approximation is sufficiently close
to a. However, integrating the PSE over an extended downstream distance
keeping a constant will violate assumption (Al) due to the variation of a
with x. Normalization conditions based on quantities other than u,,,, may
be used provided condition (Al) is not violated.

2.2 Local Solutions
To obtain pointwise results on stability and to generate the initial conditions
(6b) for stability analysis with the PSE, we apply a local procedure that
uses only the basic flow and the disturbance parameters at some streamwise
location xo, say. If the amplitude of the TS wave is sufficiently small for
linearization, this local procedure is similar to that introduced by Bouthier
(1972) and later applied by others, yet our derivation appears much simpler
and provides a more consistent formal approach. In particular, this approach
permits accounting for both nonparallelism and nonlinearity. Therefore, for
finite-amplitude TS waves, the local procedure can be coupled with a Lan-
dau expansion in the amplitude. In any case, the local procedure rests on
ordinary differential equations that govern the properties of the solution in
the neighborhood of xo. Here, we present only the linear procedure to obtain
the unknown quantities €, 94/Ox, a, and da/dx in equation (6) for given
parameters w, R0 , and the basic flow To.



We introduce a Taylor expansion for 4), a and the basic flow %o with
respect to the variable = x - x. and note that higher derivatives can be
neglected within assumption (Al) and the boundary-layer approximation to
the basic flow. We thus obtain

4)(x, y) = )o +' 4)i, a(x) = a.+ tal

and a similar expansion for the basic flow, where

8o=4(o y, )1=0(x0,y) da(xo)
00o = 0 ( xoY), 0 )i, ao = a(xo), a, = dx-

The disturbance streamrfunction takes the form

,(x,y,t) = (00 + &4))eXP[] (ao + Cai)dC - iwt] (11)

Introducing this expression into eq. (6) and requiring the equation to be
valid for varying t provides two equations,

(Lo + L, + aIL3 )0o + L20 1 = 0 (12a)

(L4 + aIL2 )0o + Lo) = 0 (12b)

where

82= o- (D2 + a2)a a .PL4~ j = a0Yy3aXG

Together with the homogeneous boundary conditions on 0 and 01 from
eqs. (6a), equations (12) represent a coupled system of equations for the
unknown quantities ao, 00(y), a,, 01(y). In contrast to previous formulations,
this system simultaneously determines all quantities up to order O(R -1 ) in
one step. Moreover, solving this system does not require the usual solvability
condition and thus eqs. (12) provide a suitable zeroth-order approximation
in a Landau expansion for finite amplitudes.

The solution of eqs. (12) can be obtained in different ways depending on
the choice of normalization and numerical approach. We can directly impose
the normalization (8) such that #o and 01 are subject to the conditions

d4o(y*) dO,(y*)=1, =-0 (13)
dy dy



and solve the nonlinear system (12), e.g. by use of Newton's method.
An interesting alternative uses the normalization a = const, and hence

implies a, = 0. Then the equations (12a,b) form an eigenvalue problem for

the single eigenvalue ao and eigenvector (0o, 01),

Lo+LI L2 ]{o (

This formulation allows to easily determine the asymptotic form of the func-
tion 4(x, y) outside the boundary layer,

(,y> 1) = (z + i)e ' (15)

This asymptotic behavior is different from that of Orr-Sommerfeld solutions
in parallel flows. Accordingly, a small error has been introduced in previ-
ous analyses that exploit the asymptotic behaviour to replace the boundary
conditions at infinity by conditions at finite y.

Finally, an iterative procedure can be utilized to solve the eigenvalue
problem subject to conditions (13). This procedure starts with solving the
Orr-Sommerfeld problem LOO0 = 0 to obtain an approximation to ao and
4'o. The next step solves eq. (12b) together with the norm (13) on 4'1 for
a, and 01 by using a solvability condition or solving the augmented system.
The third step serves to find a new approximation to a0 and 40 using the
inhomogeneous equation (12a) and a second solvability condition. Up to this
point, the iterative procedure leads to equations identical with those derived
with the method of multiple scales (e.g. Saric & Nayfeh 1977). While the
iterative procedure can be continued until the results converge to the solution
of the simultaneous equations, it is consistent with the order of approximation
to truncate after the third step.

The local procedure breaks down when lal tends to zero because the
operator L4 becomes of the order O(R - ) of the neglected terms when a
is of order O(R - 1 ). This situation occurs at low Reynolds numbers, hence
in the receptivity range. The marching procedure does not suffer from this
limitation since no ordering between a and da/dx is required. Without the
local procedure, the initial conditions must be given by some other means.



2.3 The Eigenvalue Spectrum

The eigenvalue a appears up to fourth power in the matrix of the local pro-
cedure. The spectrum is accessible through standard software packages, such
a EISPACK, provided the equations are reformulated into a larger system
that contains the eigenvalue linearly or by using the linear companion ma-
trix (Bridges & Morris 1984). Figure 1 shows the spectrum for R = 500
and F = 100 together with the spectrum of the Orr-Sommerfeld equation
(OSE). Our local formulation has the perturbing effect of splitting each OSE
eigenvalue into two neighboring pairs.

The split is due to the perturbing effect of the operators L1 and L 4 that are
of order e = O(R- 1), on the eigenvalues of the Orr-Sommerfeld operator, L0 .
Let (#I1, A2, . , AN) be the eigenvalues of L0, with associated eigenvectors
(011,42, ... , N). Set L1 and L4 to zero and call the resulting matrix M.
This matrix has the eigenvalues of Lo with multiplicity two. However, there
is only the eigenvector of the form (0j, 0) r associated with the eigenvalue 1j
of double multiplicity, consequently M is defective. It can be shown that the
index of each eigenvalue is 2, so the eigenvalues of (14) with L1 and L4 of
O(e) has a Puiseux series representation,

aa,b(E) = pj + Cl,bf1/ i + d0 ,WE2/1 + O(1,13/1) (16)

where the subscripts a and b refer to the two perturbed eigenvalues. We
conclude that the variation of the eigenvalues of (14) from the eigenvalues of
the Orr-Sommerfeld equation is of order O(R.;1/4).

If 2N Chebyshev polynomials are used to approximate the eigenvector
(O, 84)/8x), the linear companion matrix is of size 7N x 7N. By employing
the known asymptotic form of 4) outside the boundary layer, (15), the ap-
pearance of the eigenvalue is reduced from fourth order to second order, and
the linear companion matrix reduces to 4N x 4N. In addition to the saving
of computational effort, gains in accuracy are obtained (Haj-Hariri, 1989).

2.4 The Nonlinear Problem

We now consider the streamwise evolution of a wave of frequency w and
finite amplitude. In this case, the flow field is composed of the basic flow,
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the distorted TS wave, and its harmonics:

O(X,y,t) = (X,y) + E n(X,Y)expj an(C)d - inwt] (17)

where an = 7t + inc and Ia - a< < 1 holds for all n. Inserting the expansion
(17) into the disturbance equation (3), using eq. (5), and performing har-
monic balance in the frequency yields a set of coupled nonlinear equations of
the form:

[(Lo + L1 )O. + L2- IX ap[].n(C)d(] (18a)

00

=X N[#m(x,y),On-,.(x,y)exp[J (am +n..-n)d

where the linear operators L depend on a(x) and 7n(x) while the nonlinear
operator N depends on a(x), -ym(x), and -yn,n(x). For simplicity we use
in eq. (18) the normalization dan/dx = 0. To avoid violation of assuption
(Al), we use a, = const. during each marching step and implement the
normalization (8) by updating the value of a after each step.

The boundary conditions for the Fourier components in eq. (17) are:

on=-= 0, at y= 0,y-.oo for n=1,2,3,... (18b)

0 = LO-= a3 -- = 0, at y=0,--- =0 as y-oo (18c)
'ay IO3 aOy

The boundary conditions for the oscillatory Fourier components correspond
to u and v velocity vanishing at the wall and infinity. The boundary condi-
tions for the mean flow distortion omit the condition v = 0 at infinity to allow
for the variation in the displacement thickness, as required by the boundary
layer approximation.

2.5 Numerical Formulation

The semi-infinite domain above the plate is mapped algebraically to (0, 1]
and the differential operators in y are converted into algebraic form using a
spectral collocation method. If not otherwise stated, the results presented
here have been obtained using forty Chebyshev polynomials. The streamwise



derivative, 0q!/zx is approximated by the first order finite difference form
(.j+l - O~j)/Ax i . Iteration is employed to solve the nonlinear algebraic
system exactly at the midpoint of the interval, where the finite difference form
of 8/Ox is second-order accurate. The iteration employs a predictor-corrector
approach that corrects the values a, until the normalization condition is
satisfied. In this way the governing equation is simplified since the terms
da,/dx are set to zero. We note that since convergence of the iteration
is monitored during every step, marching stops if the equation fails to be
exactly satisfied.

The trapezoidal procedure leads to a coupled nonlinear algebraic system
of the form:

(L0 + L1)[O] + L2[0.4~l -

00

-EjIN~)A j ~ jA (19)
m=-oo

where the asterisk denotes quantities evaluated at the midpoint of the step,
. X

= A.(0)exp[-y +Jlft(C)dCI,

and the operators are evaluated with the parameter values at the midpoint.
The initial condition is provided by solving the nonlinear local problem

using a Landau expansion in amplitude. Such an expansion is possible since
no solvability condition is used to treat the nonparallelism of the flow.

2.6 Properties of the Global, Local, and Marching
Schemes

We have seen that the matrix (13) has pairs of neighboring eigenvalues, so,
in particular, it can have a pair of unstable eigenvalues. The eigenvalues are
purely an algebraic quantity, and we asked ourselves whether the associated
growth rate based on ua,, as in (10), displayed the same "neighboring pair"
character as found in the spectrum. Figure 3 shows the variation of the
algebraic eigenvalue pair (a) and (b) with Reynolds number as a dotted line,
and the physical growth rate associated with each one of them as a solid line.
While the algebraic eigenvalues differ noticeably, the maximum difference in
physical growth rates is negligible, being of the order of 10- . The physical



growth rates given by the local and marching procedures agree well. The
solid circles denote the marching results for the case of the initial profile
and physical growth rate given by eigenvalue (a), and the open circles for
eigenvalue (b).

The marching procedure is computationally more efficient than the local
procedure by an order of magnitude. We have performed our calculations on
a Cray-XMP/24. The marching procedure, using 40 Chebyshev polynomials,
employs 0.06 seconds per step, regardless of the step size. In contrast, the
local procedure, using Newton iteration, converges in 0.38 seconds on a Cray-
XMP/24 following a change in the Reynolds number.

An important property of the marching code is the variation of accuracy
with streamwise step size. We tested the accuracy by comparing the quantity
ifH = [12 + &211/2, based on u,, at R = 1000 obtained by marching from
R = 400 with different steps sizes. The most accurate value was assumed
to be given by the smallest step size, AR = 2, and was used as reference.
Nonlinear effects were neglected. The step sizes ranging from 2 to 100 where
used. For step sizes larger than 100 the marching procedure may diverge.
We note that using a step size of AR = 100 one marches from branch I to
branch II at this frequency in only 4 steps. The difference H - HARi 2 stays
at order 10- s up to a step size of 50, and increases afterwards to 10- at a
step size of 100.

3 The Direct Navier-Stokes Solution

The numerical method used here evolved from that presented by Spalart
(1984) and applied since to a variety of transitional and turbulent boundary
layers. The algorithm, spectral in space and second-order accurate in time,
was designed to solve the incompressible Navier-Stokes equations over a flat
plate (at y = 0) with periodic conditions in the directions (x and z) parallel
to the plate. Because of the periodicity the studies of spatially-evolving flows
could not be exact, and had to involve assumptions of slow growth of the
boundary-layer thickness and disturbance energy, similar to those presented
in part 1 of this paper but more rudimentary (see the use of the group
velocity by Spalart & Yang 1987). The streamwise evolution of the laminar
flow was accounted for to a reasonable approximation, but the non-parallel
effects (nonzero v component) were not.



The new ingredient is a procedure, first applied to the Hiemenz flow
(Spalart 1988), which allows the treatment of some truly spatially-evolving,
nonparallel flows with the same algorithm. Effectively the equations are
solved with inflow and outflow conditions, so that the range of applications
of the method is close to that of Fasel (1976). The procedure is justified only
for shallow domains such as boundary layers, or long pipes and channels.
There is a moderate waste of grid points, which is more than offset by the
many advantages of using Fourier series; the outflow condition has been
shown to accept infinitesimal waves or strongly nonlinear disturbances with
no evidence of reflection or numerical instabilities. This new method will be
useful to explore nonparallel effects and the early stages of transition, but will
not supersede the short-period "temporal" calculations for the later stages,
because of the expense involved with treating a large domain at once.

Let x be the direction in which the flow is not uniform, but for which
the numerical method requires periodicity. The periodic domain [0, A] is
divided into a "useful region" [L, A - L] and two "fringe regions" 10, L] and
[A - L, A] at either end of the interval (by periodicity, these two regions can
be regarded as one). The useful region is intended to cover the whole spatial
history of a wave whereas earlier work with this code contained only one or
a few wavelengths. Let UB(x, y) be the laminar velocity field; it satisfies the
Navier-Stokes equations, in conjunction with a pressure field PB- Split the
velocity field U(x, y, t) into a prescribed part Uo(z, y) and a disturbance part
U1 (x,y,t);

U = Uo+ U1  (20)

The first step is to define a field Uo that is periodic and smooth in x (at least
two continuous derivatives) but coincides with the laminar flow in the useful
region:

Uo(x,y)=UB(x+xo,y) for L<x<A-L (21)

Here x0 is a parameter which allows us to locate the useful region in different
parts of the laminar flow (for Blasius flow, the domain must start some
distance downstream of the leading edge). A simple way to construct U0
is to define a function i(x) which equals x on [L, A - L] but is periodic
with period A, and to write Uo = (uo, vo) with uo(x,y) = ul( , + xo, y),
vo(x, y) = (d,/dx) v1(1 + xo, y). Naturally in the fringe Uo is not a Navier-
Stokes solution. It is not even essential to make it divergence-free.



The equations governing U1 are the following:

V.U 1 =0, (22a)

U1t+Uo.VU1+U1.VUo+U1.VU = -Vp+vV 2 U,-d(x)U,+F(x,y,t). (22b)

In the useful region, Uo is a Navier-Stokes solution (i.e., Uo- VUo = -Vpo +
vV 2Uo), and d and F are both zero. A simple manipulation of (22a) then
shows that it reduces to (3) and that U = Uo + U1 satisfies the Navier-Stokes
equations within that region, which was the objective.

The key assumption is that the nonphysical phenomena occurring in the
fringe do not invalidate the solution in the useful region. In general, the
incompressible Navier-Stokes equations include long-range pressure interac-
tions; however in a shallow domain this range is only of the order of the
smaller dimension, here the boundary-layer thickness 6. This is why the as-
sumption 6 < A is essential here, as it probably is for any numerical inflow-
outflow strategy, or in a wind tunnel for that matter (defining A loosely as
the streamwise extent of the flow).

The role of the -d(x)U term in (22b) is to damp the disturbances while
they are in the fringe. d is a positive scalar function that rises smoothly
from 0 in the useful region to a finite value in the fringe. Assuming that
the laminar flow is in the positive x direction, the disturbances (i.e., UI) are
convected by U0 into the fringe and their amplitude is reduced by orders of
magnitude by the -dU 1 term. As a result the fluid that enters the useful
region from the fringe, at x = L, is essentially free of disturbances, which
amounts to the "inflow condition" U = U0 = UB. We assume that the
useful region and the fringe communicate only by convection of disturbances,
and that information cannot travel upstream more than a few b. In other
words, on the scale of L and A, the equations have a parabolic behavior.

The last term in (22b) is a prescribed body force F(x,y,t), periodic in
time and confined to a short region in x, that is used to generate waves in
the flow (the analog of a vibrating ribbon). With the present setup, adding
a body force within the domain is more convenient than explicitly adding
the perturbation to the inflow condition. In either case, there is no shape for
the perturbation that is more justified than others. However, some shapes
do generate waves in a smoother manner, resulting in a shorter transient in
z before the wave is "well developed" in the sense of exhibiting a smooth
growth rate (there is no rigorous concept of a "pure" TS wave since the



solution is fully two-dimensional). A fair choice is of the form F. = ft/ay,
Fv = -ao/8x, with

( 2  y2c exp( (X- X'-) y 2 cos(wt - kx). (23)

Here, e is the amplitude of the force; a. and a. are length scales in x and
y; x, is the position of the "ribbon"; w is the frequency of the wave; k is a
wave-number. The primary parameters are w and x,. + xo, and c becomes
important for nonlinear waves. The other parameters are chosen empirically
to obtain a smooth transient; k is an estimate of the wave-number of the
wave, a, is of the order of the wave-length, and o, of the order of S.

The function in (23) was constructed from a Gaussian factor, to make it
fall rapidly but smoothly to 0; a y2 factor, to impose the boundary conditions
at the wall; and a time-periodic wave-like dependence on t and x. The couple
(F,, F.) is divergence-free. The boundary and divergence conditions are not
indispensable in a body force, but if the divergence-free projection of F does
not satisfy the no-slip condition thin shear layers will appear at the wall, and
may degrade the numerical accuracy.

In the algorithm that solves (22b) for U the terms not found in the
Navier-Stokes equations (two cross terms with U0 and the d and F terms) are
treated like the nonlinear term U1VU 1, by an explicit Runge-Kutta scheme.
This limits the magnitude of d, for numerical stability; a typical peak value
for d(x) is 0.5/At (At being the time step). In a typical situation U, is
reduced by three orders of magnitude while passing through the fringe (for
our purpose there is no need to reset U, exactly to 0). This can be achieved
with L :.m A/9; thus, less than 25% of the domain is wasted.

In practice the functions d, i - x, and F are not exactly zero in the useful
region, since Gaussians are used. However, the parameters such as a, are
chosen small enough (relative to A) that the residual values are negligible.
Note also that since UB is given by the Blasius equations, it is not exactly
a Navier-Stokes solution. A higher-order approximation would require fur-
ther assumptions about the outer flow, and not be unique; and its stability
properties would presumably differ very little from those of the basic Blasius
solution.

The system given by (22) was programmed and tested, and the parame-
ters such as L/A or a,16 chosen, mostly empirically. One basic requirement



is that the homogeneous system (F = 0) be stable, which is not granted
because of the streamwise amplification of the wave and depends primarily
on the d term and the width of the fringe. When this is true, we can start at
t = 0 with U = 0 and activate F. After a sufficient time (a few times A/Uoo)
a time-periodic solution is obtained for U1. With infinitesimal amplitudes
c the nonlinear term UIVU is inactive and the system behaves linearly; in
particular, the periodic solution is accurately harmonic with frequency w.
Resolution tests, tests in which x0 was varied, and moderate alterations of
the ribbon parameters were all satisfactory. Another test is to use for UB
a parallel flow with Blasius profile. In that case exponential growth in z
is obtained, with a growth rate close to that given by the Orr-Sommerfeld
equation. Furthermore the growth rate is maintained up to the edge of the
fringe at A - L, demonstrating that there is very little upstream influence of
the extra terms in the fringe. This test also allows us to estimate the extent
of the transient needed to the right of x, to obtain a well-developed wave.
Even with well-chosen parameters in (23), this extent is about 5 104v/U 0
in z; as a result, it is impossible to firmly define the leftmost part of the
neutral curve, which is around x = 9 104v/Uo,. In addition, it is much
more difficult to obtain smooth and reproducible growth rates for decaying
waves than for growing waves (this was to be expected, considering the ex-
istence of continuous-spectrum modes with arbitrarily small decay rates in
the Orr-Sommerfeld equation).

Amplitude ratios (for the wave amplitude from Branch I to Branch II) of
the order of e' have been obtained (with F = 50). Much larger ratios, such
as e1° , will eventually cause problems because even small numerical errors in
the large-amplitude region will degrade the accuracy in the low-amplitude
region. This would be true with almost all numerical methods, whether the
errors propagate due to the global character of a spectral method, or to an
implicit time integration scheme, or to the Poisson solver for the pressure.
This numerical difficulty is absent in all the "temporal" calculations, or in
the parabolic theory presented in this paper.

Two cases were chosen to compare the theory and the numerical results.
One is linear and at relatively low frequency (F = 50), see Fig. 6; the
emphasis is on nonparallel effects. The other is nonlinear, at F = 86, see
Fig. 11 and 12.



4 Results

4.1 Nonparallel Effects

Experimental measurements have shown the occurrence of instability at lower
Reynolds numbers and at higher frequencies than predicted by the parallel
theory. The discrepancy has often been attributed to the effect of basic flow
nonparallelism, and the consensus was, and still is amongst some researchers,
that nonparallelism is always and strongly a destabilizing agent. This belief
is incorrect, and stems from a misinterpretation of the results. Herein we
duplicate the analysis of previous researchers using the linear PSE. By using
the same code for the comparison we remove the 'computational' differences
and highlight the role played by the interpretation of results.

As described above, the choice of reference length b. for nondimensional-
ization is the value of 5(io) at the initial location of the marching calculations.
Since this location varies from run to run we remove this variation from the
output data by redimensionalizing all results with the local length scale, b(i).

The first published study of nonparallelism dates back to 1972, by Bouthier.
Gaster published his results in 1974, and Saric & Nayfeh published theirs in
1974, 1975, and 1977. The results of Gaster where confirmed by Van Stijn &
Van de Vooren in 1982, and the results of Saric & Nayfeh where confirmed
by Bridges & Morris. All investigators used the method of multiple scales,
except Gaster who used a W.K.B.J. technique. Both approaches are equiv-
alent to first order, however Gaster noted that the ability of the method of
multiple scales to proceed to higher order side-steps the elliptic nature of the
disturbance equation (3), possibly leading to nonphysical results.

We have applied Bouthier's and Gaster's definition of growth to the re-
suits given by the linearized PSE and compared the resulting neutral stability
curves. Bouthier chose to measure growth by monitoring the disturbance's
kinetic energy, f = u2 + v2, and defined instability on a pointwise basis,
Gaster chosed the integral of the kinetic energy, the integral of the u compo-
nent of velocity, and the quantity um,,,... Figure 3 shows the comparison, the
symbols denote data from Bouthier and Gaster, the lines denote our calcu-
lations. The good agreement shows the reproducibility of their results, and
shows the sensitivity of the neutral stability curve to the chosen definition of
growth.

Bouthier performed his study in parabolic coordinates. Perhaps for this



reason he was biased in considering measuring rates of streamwise change
along lines of constant Y1,

1 86
-B(xq) = - (24)

The differentiation along lines of constant 7 misleadingly distorts the growth
rate. Most of the effects Bouthier attributed to nonparallelism are really due
to the direction of differentiation. To illustrate this point we have applied
definition (24) to data furnished from the Orr-Sommerfeld equation (OSE),
since differentiating along lines of constant iT(x) renders the growth rate of
the OSE a function of x and y. The results are shown in figure 4 in the
form of lines in the R, ,7 plane on which the growth rate is constant, i.e.
iso-amplification contours. Both the contours from nonparallel calculations,
figure 4a, and the ones from the OSE, figure 4b, show similar structure.
Note in particular that near the wall both plots show maximum instability.
Bouthier's neutral stability curve shown in figure 3 is based on the stability
at the wall. For the parallel results one can show that at the wall, i.e. in the
limit of y --+ 0, definition (24) yields the growth rate nosE - 1/(2R), showing
clearly how (24) leads to misleading values. The dots in figure 4a,b mark the
position of u,,,.. In figure 4b they also mark the branch I and II as given
by the parallel theory, since at this point the direction of differentiation does
not affect the growth rate.

Saric & Nayfeh intended to use u,., as the indicator of growth in order
to compare directly with experimental measurements but instead published
a neutral stability curve based only on the eigenvalue of the Orr-Sommerfeld
equation plus its nonparallel correction. Bridges and Morris have shown that
the corresponding physical quantity is the v component of velocity measured
at approximately y = 2. At this location the contribution by the profile,
(1/v)(Ov/az is zero. The usefulness of such definition is limited, since in
experiment the v component of velocity is too small to measure. Saric &
Nayfeh displayed also growth rates based on u, differentiated along lines of
constant q/. These results are in agreement with ours, and the comparison is
shown in figure 7.

Among the analysis of the above investigators, the analysis of Gaster
was the most accurate and complete. He compared growth rates based on
Umax with experimental data, and concluded that the discrepancy at the high
frequencies could not be explained. In figure 3 we compared results for the



kinetic energy definition:

E(x) = LO2 + V2)dY

1dE
!G = 1 "E (25)

The effect of nonparallelism on the neutral curve is visible at the higher
frequencies. A direct comparison with experimental data is not possible be-
cause, to the authors' knowledge, no experimental growth rates of integrated
data is available. Saric & Nayfeh argued that both Bouthier's and Gaster's
definition of energy is incomplete, missing the product between the distur-
bance and the basic flow. This quantity is measured in experiment. We
comput the neutral stability curve based on their definition of energy (no
results where given by Saric & Nayfeh),

= 2Uou + u 2 + V2

Eft)= foT joo i 2dydt

1 dt

where * denotes complex conjugate, T is one period of the TS wave, and time
integration is used to obtain an rms value. Obtaining an rms value in time
rather than in space, as chosen by Saric & Nayfeh, is simpler. The neutral
stability curve is shown in figure 3 as a solid line with a dot at its peak. The
difference in growth rates 7G and IS is negligible.

Figure 5 shows the neutral stability curve based on the growth rate of
Uma,, as defined by (10a). Gaster's neutral curve based on this quantity is not
shown, but it agrees very well with our results. The u velocity profile exhibits
two local maximums (see figure 12b) and Gaster computed the growth rate
at both the lower and the upper maximum. Our calculations show that the
labels for the lower and upper maximum in Gaster's figure 2 are switched, an
unfortunate typographical error since the two curves are noticeably different.

Comparison of the neutral curve based on um,, with the curve given
by the parallel calculations shows the effect of nonparallelism to be small.
The critical Reynolds numbers remains unchanged, and the overall effect of
nonparallelism on the neutral stability curve is a slight extension to higher



frequencies, and a streamwise shift of branch one and two. More importantly
the maximum growth rate in the nonparallel flow, again based on u,,., is
close to the value given by parallel theory. Figure 6a and 6b show amplitude
variation, based on u,,, of a TS wave at frequency of 220 and 50, respec-
tively, calculated by the parallel theory (dashed), the u,m., and the integral
of the kinetic energy. The circles denote data given by the full Navier-Stokes
solution using an maximal TS amplitude of 10sup- 8 to ensure linearity. At
the lower frequency all three curves have similar values. This is noteworthy
since TS waves may reach the amplitudes needed to generate secondary in-
stability at these lower frequencies, while at the higher frequencies, where
advance stages of transition are unlikely to occur, the difference between
them increases.

The experimental data of Ross, Barnes, Burns & Ross, and of Schubauer
& Skramstad, is shown in figure 5, along with the experimental data of
Strazisar & Reshotko (the only ones to show error bars), Kachanov & Levchenko
and Wortmann as reported in figure 1 of Saric & Nayfeh. The neutral curve
given by the PSE using (10) and given by the OSE are also shown. The
discrepancy between calculated and measured neutral curves is significant
at frequencies above 200. Measurement of the weak amplification at these
high frequencies and low Reynolds numbers is plagued with difficulties, as
mentioned to us by Saric in a private communication. To name some; a) The
region of accelerated flow at the leading edge makes difficult to relate the po-
sition of measurement to Blasius coordinates, b) Measurements too close to
the ribbon cannot be trusted, while the finite span of the ribbon affects mea-
surements downstream, c) The zero pressure gradient required for Blasius
flow is very tough to achieve, and small variations of Cp have large effects on
stability, d) At high frequencies the combination of small amplitude changes
and experimental error makes the measurement of growth difficult.

In conjunction with b), our numerical results indicate that altering the
initial condition results in a transient region which can display higher growth
rates than the unperturbed case. These results are discussed below. More-
over, part of the discrepancy between measured and calculated data shown
in figure 5 can be attributed to the experimental procedure. Ross et al. mea-
sured the growth of the u component of velocity along lines of constant 77
at points .1 off .R the maximum of u, thus altering the growth rate in the
same way as Bouthier. Figure 7a shows the iso-amplification lines in the R
eta plane at a frequency of 200 based on the u component of velocity and



differentiation along lines of constant 17. Figure 7b shows the lines obtained
by differentiating along lines of constant y. The square in 7a denotes the
location of measurement of Ross et al. Note that at this height branch one is
about 20 R upstream of the value based on u,,, whose position is marked
with the circle. This observation helps explain the 'systematic error of -20
R' mentioned in their paper.

Measurement of growth below the position of u,,., also extends the neu-
tral curve to higher frequencies. Figure 8 shows the calculated neutral curve
based on the growth of u along lines of constant eta at the location of mea-
surement of Ross et al., 17 = 0.7, at qi = 0.4 and at il = 0. This last
curve corresponds to Bouthier's neutral curve in figure 5. The increase of the
maximum unstable amplitude as the point of measurement moves towards
the wall demonstrates how the the neutral curve can be extended to higher
frequencies by the measuring technique.

Schubauer & Skramstad measured growth along lines parallel to the plate
at a location below the maximum of u. Figure 7b shows the iso-amplification
lines obtained with this procedure. While the investigators believed that
measuring below the maximum introduced an apparent damping, in reality
it introduced a destabilizing action. Note that, below y = 3, the left neutral
line, which corresponds to branch one, reaches the highest Reynolds number
at uma: and the right neutral line, which corresponds to Branch two, reaches
the lowest Reynolds number also at umG.,. Thus differentiating at constant y
misleadingly shows amplification anywhere off the maximum of u (for y < 3).

At the height corresponding to u,,,, the measurement of growth is inde-
pendent of direction. Conversely, we investigated the growth rate along a
family of lines of the form y = Zc, with c varying from zero to one half, to see
if the growth rate is constant across the boundary layer along a particular
direction. No such direction was found.

5 Transient Analysis

We studied the sensitivity of growth rates to changes in the initial condi-
tions. The correct initial profile, phi., as given by the local procedure, was
perturbed with a profile satisfying the b.c. but otherwise arbitrarily chosen
of the form

OD = Ay2e
-y 

-<
2



where the amplitude A is such that the maximum of the u component of the
perturbation is one and one-half times the maximum of the undisturbed TS
wave, and the value of C is chosen so that no singularity exists at the initial
location of marching (Hall 1983).

C= 1/2 + a216 + iwR/12

As shown in figure 9a, the TS wave u component of velocity is perturbed
mainly in the region below the point of phase reversal, the region most likely
influenced by the vibrating ribbon at the critical layer (y 1/3) used in
the experiments. No claim is made, however, of capturing the true events
at the ribbon. The initial value of the growth rate and wavenumber, ao
was perturbed by increasing its value by 50 percent. The complete initial
disturbance streamfunction was

tko =(Oo + (k)e(+1/2)"oe

The recovery to the unperturbed TS profile was found to occur within one
wavelength, A0. To be consistent with the parabolic approximation, very
small step sizes where taken in the initial stages of marching. Two step
sizes were used; (Si) 0.003125A0 and (S2) 0.00625Ao. After marching half a
wavelength downstream the step size was increased to 0.025Ao and 0.05A0,
respectively.

Figure 9b shows the transient growth rate, based on u,,,,,, at F = 50. The
initial location xo is at R = 550, which is one wavelength upstream of branch
1. The close agreement between the solid and dashed lines, corresponding
respectively to step sizes S1 and S2, shows that the numerical effects are not
strong. The transient growth rate shifts branch 1 upstream by the modest
amount of ; 5AR. The velocity profile half a wavelength downstream of x0
was found to closely follows the undisturbed TS profile. This fast recovery
indicates that, within our choice of perturbation, the evolution of the TS
wave depends weakly on different initial conditions, much unlike the case of
Goertler vortices, as discussed by Hall.

At higher frequencies, where the growth rates are weak, the growth rate
oscillates about the unperturbed value for a longer downstream distance.
Figure 9c shows the transient growth rates at F = 270. The oscillations are
strong enough to display a branch 1 and a branch 2 at a frequency well above
the neutral curve. This could explain, in part, the experimentally measured



neutral curve at the higher frequencies. The neutral stability curve given by
our choice of perturbation function is shown in figure 10.

5.1 Nonlinear Analysis
One may also suspect the neglect of nonlinearity in the theory to contribute
to the discrepancy between results and measured data. To the best of our
understanding, the experimental measurements of Ross et al. at the higher
frequencies have been performed at a TS wave amplitude of about 1.4 per-
cent rms. A previous study (Herbert, 1975) employing the parallel flow
approximation has shown that the effect of nonlinearity on the stability of
the Blasius boundary layer at the higher frequencies is destabilizing. Our
nonlinear nonparallel calculation based on a Landau expansion in amplitude
confirm this, but the shift from the linear calculation is small. The circles in
figure 10 show neutral stability points for a u. amplitude of 1.4 percent,
where growth rate is based on u,,. of the TS wave. We conclude that in the
Blasius boundary layer the discrepancy between experiment and theory still
exist, and cannot be attributed to nonparallel and nonlinear effects.

The nonlinear evolution of a 2 dimensional TS wave of frequency F = 86
was studied starting form R = 400 and marching downstream. Six Fourier
components were used, with wavenumbers Oa, a ... , 5a. Three initial ampli-
tudes where selected; A0 = 0.20%, 0.25%, and 0.30% (based on u,,,, rms).
The results show that the effects on nonlinearity increase strongly with am-
plitude. When A0 = 0.25%, the disturbance reaches a maximum amplitude
of 2.44% at R = 877, and then decays, but when Ao = 0.30%, the distur-
bance keeps growing even past R = 950. We believe that eventually the
disturbance will reach an quasi equilibrium state where the amplitude will
vary slowly (if at all) with streamwise position at amplitude levels of the or-
der of 10 percent. Three dimensional disturbances, i.e. secondary instability,
will develop at much lower amplitudes, so these equilibrium states are mostly
of academic interest.

Amplitude curves are shown in figure 11. The upper heavy line is the
amplitude of the TS wave for the 0.25 percent initial amplitude level, the
lower heavy line is the amplitude of the 2c harmonic. The upper and lower
thin lines show the corresponding quantities for an initial TS amplitude of
0.30 percent. The dashed curve is given by linear analysis with a 0.25 percent
initial amplitude. The circles and squares denote the values given by the full



Navier-Stokes simulation, and show good agreement with our results. The
velocity profiles for the 0.25 percent initial amplitude case, at R = 800 are
shown in figure 12. For the u velocity profiles of the TS wave and the 2a
and 3a harmonics the abscissa is the rms amplitude. The abbreviation MFD
stands for mean flow distortion, which is the zero wavenumber harmonic.
The squares denote the values given by full Navier Stokes simulation.

The effect of nonlinearity on growth rate is readily seen in figure 13,
where growth rates are plotted vs. amplitude at various Reynolds numbers
(F = 86). The lines are from the Landau amplitude expansion of order A',
A7, and A9 , and the circles are given by the the marching code with various
runs with increasing initial amplitude. The error in the marching procedure
is of order of the amplitude of the last term in the Fourier series, which can
be easily monitored.

The good agreement between the nonlinear solutions to the PSE and
full Navier-Stokes solutions reinforces the correct ordering of the neglected
terms to 0(R2). We ran the marching code on a Cray XMP/24. Even
though no special effort was made to optimize the code, and 0 for each
Fourier component was approximated by 40 Chebyshev polynomials, run
times remained short: the two runs needed to generate the data shown in
figure 11 took 162 seconds of CPU time each, while the data for figure 8
(linear calculation) was obtained in less than 4 seconds.

6 Concluding Remarks

In view of the diverse results of previous studies, we have used the PSE
to investigate the effect of nonparallelism in the Blasius boundary layer.
Our results show that this an effect is small, in agreement with the results
of Gaster (1974) and Van Stijn & Van de Vooren (198?). The numerical
results of Bouthier (1973) and Saric & Nayfeh (1977) can be reproduced but
our analysis shows that their definitions of growth rates are not based on
relevant physical quantities, hence should not be compared with the existing
experimental measurements.

The effect of finite amplitudes on growth rates is considered. Our nonlin-
ear investigations show that the maximum unstable frequency is higher than
predicted by linear theory, but not high enough to explain the experimentally
observed amplifications. The effect of initial transients on the evolution of



TS waves is also considered. By arbitrarily distorting the initial conditions
we observe a region of transient growth which can alter the curve of neutral
stability, suggesting a possible reason for the discrepancy at high frequencies
between experiments that use a vibrating ribbon to excite the boundary layer
and stability theory.

An alternative approach for studying the spatial evolution of disturbances
in boundary layers including nonlinear and nonparallel effects is the direct
numerical solution to the Navier-Stokes equation. Special care must be taken
to avoid using outflow boundary conditions which reflect upstream part of
the energy of an outgoing disturbance. Herein we present a method for
solving the full Navier-Stokes equation which uses buffer zones adjacent to
the inflow and outflow boundaries, but still maintains the benefits of using
Fourier series in the streamwise and spanwise direction.

The direct Navier-Stokes approach does not take advantage of the essen-
tially parabolic character of the evolution of the disturbances, except in the
fringe regions. This approach has an advantage and a disadvantage when
compared to solving the PSE. The advantage is that the solution remains ac-
curate all the way into turbulent flow, provided there is sufficient resolution,
while the validity of the PSE may become questionable at the tertiar. stages
of transition, characterized by the appearance of spikes. The disadvantage is
the enormous increase of memory and computational time needed. For this
reason the PSE has practical applications.

Results from the two approaches are compared as a first step in valida-
tion, and the agreement is found to be excellent. We plan to extend the
comparisons to the evolution of three-dimensional disturbances, and to flows
with adverse pressure gradients. We divided this paper into three parts,
the first of which describes the Parabolic Stability Equation, the second the
full Navier-Stokes solution, and the third the results. Although the devel-
opment of the parabolic stability equation by Herbert & Bertolotti and of
the direct Navier-Stokes solver by Spalart was done independently, the au-
thors feel that the reader will benefit from the side by side presentation of
the two approaches and associated results which describe the same physical
phenomena.
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Figure 1. Eigenvalue spectrum at R = 500, F = 100. Triangles denote values obtained
with expansion of , a lax in 25 Chebychev polynomials, circles denote values ob-
tained with 40 polypornials. Solid dots denote values from Orr-Sommerfeld equation
calculated with 40 polynomials, solid line with 80 polynomials.
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Figure 2. Variation of 'y = real (a ) of the eigenvalue-pair (a) and (b) with Reynolds
number at a frequency of 86. Dash lines denote values of the eigenvalue 'y, solid lines
denote the growth rate based on u. associated with the cigenvalue. Symbols dente
the growth rate given by the marching procedure employing as initial condition the
eigenvector associated with eigenvalue (a), solid dots, and eigenvalue (b), circles.

Algebraic and Physical Growth rates, F=86

Eig. (a)

Ca

o 0.005 " ......................................... ......................

0 .g

---- Local, Algebraic

-0.010.... ................... . .................. ................
* Local, Physical (Um)

*March, Physical (Umax). Eig (a)

-0.015~ 0 :.March,. Phytical. .(Ulm,,),.:Eig..(b). ....

400 500 600 700 800 900

R



- 30 -

Figure 3. Reproduction of the neutral stability curves of Bouthier and Gaster with the
PSE (solid lines). Circles denote the original results of Bouth,-,t, sq~uares those of Gas-

ter. The da curve is given by Orr-Sommerfeld equation.
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Figure 4. Lines of constant amplification in the R, 11 plane at a frequency of F =200.
Growth rate based on energy, eq (24). (a) results from present formulation, (b) results
from Orr-Sommerfeld equation. Circles denote position of um..
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Figure 5. Comparison of neutral stability curve based on growth of ur,, with the

curve given with the Orr-Sommerfeld equation (parallel flow) and with experimental

data (from figure 1 of Saric & Nayfeh).
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Figure 6. Amplitude of the disturbance based on the quantities f( U2 + vsuo 2) dy and
UM. at a frequency of 220 (a) and 50 (b). Growth rates nondimensionalized with the
local value of 8(x). Circles denote results from the full Navier-Stokes calculation us-
ing a maximum TS amplitude of 10. Dashed line given by Orr-Somnierfeld equation
(parallel flow).
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Figure 7. Lines of constant amplification in the R, n~ plane at a frequency of F = 200.
Growth rate based on the u component of velocity. (a) Differentiation along lines of
constant il, (b) differentiation along lines of constant y. Circles denote the location of
U.. Square denotes location of measurement used by Ross et al. Triangles denote
results given by Saric & Nayfeh.
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Figure 8. Neutral stability curves of growth rate based on u component of velocity
obtained by performing the measurement at different distances from the wall.
Differentiation along lines of constant 11. Comparison with the experimental data of
Ross et al. (squares) and Schubauer & Slcramnstad (circles).
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Figure 9. Transient response of TS wave to perturbed LC. (a) Initial perturbed u
velocity profile. Dots represent unperturbed values. (b) Growth rate given with step
size SI (solid line) and S2 (dashed line) at F =50 (b), and F = 270 (c).6 .ii i l I  ....... ... .... ...ii~ i i i
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Figure 10. Particular of the neutral stability curve based on the growth rate of um.
Solid line given by linearized PSE, circles given by Landau expansion in amplitude at
an amplitude of 1.4% rms based on um. of the TS wave. Dashed line from Orr-
Sommerfeld equation. Triangles given by linear PSE with perturbed initial conditions,

as in fig 9.
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Figure 11. Comparison of amplitude growth, based on u. from nonlinear calculation
employing 6 Fourier modes (solid) and full Navier-Stokes solution (symbols) Top
heavy line denotes amplitude of TS wave with initial amplitude of 0.25%. Bottom
heavy line is amplitude of 2a harmonic. Light line denote corresponding results for in-
itial TS wave amplitude of 0.30%. F = 86. Dashed line from linear PSE calculation
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Figure 12 Profiles for the OF, F = 86 (TS wave), 2F, and 3F Fourier components at
R = 800, from the calculation using 0.25% initial amplitude, shown in figure 13. Sym-
bols denote values given by full Navier-Stokes solution.
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Figure 13. Amplitude vs. growth rate at F = 86 at selected Reynolds numbers. Lines
from Landau expansion with terms up to order As, A , and A9, circles from marching
solutions with initial amplitudes 0.02%, 0.2%, 0.25%, and 0.3%, at R =400.
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